Yi Liu , Lianan Guo , Guoli Qu, Yang Xiang, Xu Zhao, Hua Yuan, Ting Li, Liangzhu Kang, Shiwen Tang, Bin Tu, Bingtian Ma, Yuping Wang, Shigui Li, Weilan Chen, Peng Qin
{"title":"编码α-微管蛋白的 \"宽粒4 \"通过影响水稻细胞的扩展来调节谷粒大小","authors":"Yi Liu , Lianan Guo , Guoli Qu, Yang Xiang, Xu Zhao, Hua Yuan, Ting Li, Liangzhu Kang, Shiwen Tang, Bin Tu, Bingtian Ma, Yuping Wang, Shigui Li, Weilan Chen, Peng Qin","doi":"10.1016/j.cj.2023.05.013","DOIUrl":null,"url":null,"abstract":"<div><p>Rice is one of the three most important food crops in the world. Increasing rice yield is an effective way to ensure food security. Grain size is a key factor affecting rice yield; however, the genetic and molecular mechanisms regulating grain size have not been fully investigated. In this study, we identified a rice mutant, <em>wide grain 4-D</em> (<em>wg4-D</em>), that exhibited a significant increase in grain width and a decrease in grain length. Histological analysis demonstrated that <em>WG4</em> affects cell expansion thereby regulating grain size. MutMap-based gene mapping and complementary transgenic experiments revealed that <em>WG4</em> encodes an alpha-tubulin, OsTubA1. A SNP mutation in <em>WG4</em> affected the arrangement of cortical microtubules and caused a wide-grain phenotype. <em>WG4</em> is located in nuclei and cytoplasm and expressed in various tissues. Our results provide insights into the function of tubulin in rice and identifies novel targets the regulation of grain size in crop breeding.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":"11 6","pages":"Pages 1931-1936"},"PeriodicalIF":6.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214514123000892/pdfft?md5=44d38c2d58780a99e8e0241f440de492&pid=1-s2.0-S2214514123000892-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Wide grain 4, encoding an alpha-tubulin, regulates grain size by affecting cell expansion in rice\",\"authors\":\"Yi Liu , Lianan Guo , Guoli Qu, Yang Xiang, Xu Zhao, Hua Yuan, Ting Li, Liangzhu Kang, Shiwen Tang, Bin Tu, Bingtian Ma, Yuping Wang, Shigui Li, Weilan Chen, Peng Qin\",\"doi\":\"10.1016/j.cj.2023.05.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rice is one of the three most important food crops in the world. Increasing rice yield is an effective way to ensure food security. Grain size is a key factor affecting rice yield; however, the genetic and molecular mechanisms regulating grain size have not been fully investigated. In this study, we identified a rice mutant, <em>wide grain 4-D</em> (<em>wg4-D</em>), that exhibited a significant increase in grain width and a decrease in grain length. Histological analysis demonstrated that <em>WG4</em> affects cell expansion thereby regulating grain size. MutMap-based gene mapping and complementary transgenic experiments revealed that <em>WG4</em> encodes an alpha-tubulin, OsTubA1. A SNP mutation in <em>WG4</em> affected the arrangement of cortical microtubules and caused a wide-grain phenotype. <em>WG4</em> is located in nuclei and cytoplasm and expressed in various tissues. Our results provide insights into the function of tubulin in rice and identifies novel targets the regulation of grain size in crop breeding.</p></div>\",\"PeriodicalId\":10790,\"journal\":{\"name\":\"Crop Journal\",\"volume\":\"11 6\",\"pages\":\"Pages 1931-1936\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214514123000892/pdfft?md5=44d38c2d58780a99e8e0241f440de492&pid=1-s2.0-S2214514123000892-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Journal\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214514123000892\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514123000892","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Wide grain 4, encoding an alpha-tubulin, regulates grain size by affecting cell expansion in rice
Rice is one of the three most important food crops in the world. Increasing rice yield is an effective way to ensure food security. Grain size is a key factor affecting rice yield; however, the genetic and molecular mechanisms regulating grain size have not been fully investigated. In this study, we identified a rice mutant, wide grain 4-D (wg4-D), that exhibited a significant increase in grain width and a decrease in grain length. Histological analysis demonstrated that WG4 affects cell expansion thereby regulating grain size. MutMap-based gene mapping and complementary transgenic experiments revealed that WG4 encodes an alpha-tubulin, OsTubA1. A SNP mutation in WG4 affected the arrangement of cortical microtubules and caused a wide-grain phenotype. WG4 is located in nuclei and cytoplasm and expressed in various tissues. Our results provide insights into the function of tubulin in rice and identifies novel targets the regulation of grain size in crop breeding.
Crop JournalAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍:
The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics.
The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.