面向社区问答的多知识源集成深度学习模型

N. V. Tu, L. Cuong
{"title":"面向社区问答的多知识源集成深度学习模型","authors":"N. V. Tu, L. Cuong","doi":"10.25073/2588-1086/vnucsce.295","DOIUrl":null,"url":null,"abstract":"The community Question Answering (cQA) problem requires the task that given a question it aims at selecting the most related question-answer tuples (a question and its answers) from the stored question-answer tuples data set. The core mission of this task is to measure the similarity (or relationship) between an input question and questions from the given question-answer data set. Under our observation, there are either various information sources as well as di erent measurement models which can provide complementary knowledge for indicating the relationship between questions and question-answer tuples. In this paper we address the problem of modeling and combining multiple knowledge sources for determining and ranking the most related question-answer tuples given an input question for cQA problem. Our proposed model will generate di erent features based on di erent representations of the data as well as on di erent methods and then integrate this information into the BERT model for similarity measurement in cQA problem. We evaluate our proposed model on the SemEval 2016 data set and achieve the state-of-the-art result. \nKeywords \nCommunity question answering, Multi knowledge sources, Deep learning, The BERT model \nReferences \n[1] C. Alberto, D. Bonadiman, G. D. S. Martino, Answer and Question Selection for Question Answering on Arabic and English Fora, in Proceedings of SemEval-2016, 2016, pp. 896-903. \n[2] Filice, D. Croce, A. Moschitti, R. Basili, Learning Semantic Relations between Questions and Answers, in Proceedings of SemEval-2016, 2016, pp. 1116-1123. \n[3] Wang, Z. Ming, T. S. Chua, A Syntactic Tree Matching Approach to Finding Similar Questions in Community-based qa Services, in SIGIR, 2009, pp. 187-194. \n[4] Pengfei, Q. Xipeng, C. Jifan, H. Xuanjing, Deep Fusion lstms for Text Semantic Matching, in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Vol. 1, 2016, pp. 1034-1043, \nhttps://doi.org/ 10.18653/v1/P16-1098. \n[5] Jonas, T. Aditya, Siamese Recurrent Architectures for Learning Sentence Similarity, in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), 2016, pp. 2786-2792. \n[6] Jacob, C. M. Wei, L. Kenton, T. Kristina, Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding, in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019, pp. 4171-4186. \n[7] Wissam, B. Fady, H. Hazem, Arabert: Transformer-based Model for Arabic Language Understanding, in Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on O ensive Language Detection, 2020, pp. 9-15. \n[8] Lukovnikov, A. Fischer, J. Lehmann, Pretrained Transformers for Simple Question Answering Over Knowledge Graphs, ArXiv, abs/2001.11985, 2019. \n[9] V. Aken, B. Winter, A. Loser, F. Gers, How Does BERT Answer Questions?: A Layer-Wise Analysis of Transformer Representations, in Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019. \n[10] Chan, Y. Fan, A Recurrent BERT-based Model for Question Generation, in Proceedings of the Second Workshop on Machine Reading for Question Answering, 2019, pp. 154-162. \n[11] Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, ALBERT: A Lite BERT for Self-supervised Learning of Language Representations, ArXiv, abs/1909.11942, 2020. \n[12] Ngai, Y. Park, J. Chen, M. Parsapoor, Transformer-Based Models for Question Answering on COVID19, ArXiv, abs/2101.11432, 2021. \n[13] Yu, L. Wu, Y. Deng, R. Mahindru, Q. Zeng, S. Guven, M. Jiang, A Technical Question Answering System with Transfer Learning, in Proceedings of the 2020 EMNLP (Systems Demonstrations), 2020, pp. 92-99. \n[14] S. McCarley, R. Chakravarti, A. Sil, Structured Pruning of a BERT-based Question Answering Model, arXiv: Computation and Language, 2019. \n[15] Almiman, N. Osman, M. Torki, Deep Neural Network Approach for Arabic Community Question Answering, Alexandria Engineering Journal, Vol. 59, 2020, pp. 4427-4434. \n[16] Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, I. Polosukhin, Attention is all you Need, in Advances in Neural Information Processing Systems, 2017, pp. 5998-6008. \n[17] T. Nguyen, A. C. Le, H. N. Nguyen, A Model of Convolutional Neural Network Combined with External Knowledge to Measure the Question Similarity for Community Question Answering Systems, International Journal of Machine Learning and Computing, Vol. 11, No. 3, 2021, pp. 194-201, https://doi.org/ 10.18178/ijmlc.2021.11.3.1035.","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Deep Learning Model of Multiple Knowledge Sources Integration for Community Question Answering\",\"authors\":\"N. V. Tu, L. Cuong\",\"doi\":\"10.25073/2588-1086/vnucsce.295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The community Question Answering (cQA) problem requires the task that given a question it aims at selecting the most related question-answer tuples (a question and its answers) from the stored question-answer tuples data set. The core mission of this task is to measure the similarity (or relationship) between an input question and questions from the given question-answer data set. Under our observation, there are either various information sources as well as di erent measurement models which can provide complementary knowledge for indicating the relationship between questions and question-answer tuples. In this paper we address the problem of modeling and combining multiple knowledge sources for determining and ranking the most related question-answer tuples given an input question for cQA problem. Our proposed model will generate di erent features based on di erent representations of the data as well as on di erent methods and then integrate this information into the BERT model for similarity measurement in cQA problem. We evaluate our proposed model on the SemEval 2016 data set and achieve the state-of-the-art result. \\nKeywords \\nCommunity question answering, Multi knowledge sources, Deep learning, The BERT model \\nReferences \\n[1] C. Alberto, D. Bonadiman, G. D. S. Martino, Answer and Question Selection for Question Answering on Arabic and English Fora, in Proceedings of SemEval-2016, 2016, pp. 896-903. \\n[2] Filice, D. Croce, A. Moschitti, R. Basili, Learning Semantic Relations between Questions and Answers, in Proceedings of SemEval-2016, 2016, pp. 1116-1123. \\n[3] Wang, Z. Ming, T. S. Chua, A Syntactic Tree Matching Approach to Finding Similar Questions in Community-based qa Services, in SIGIR, 2009, pp. 187-194. \\n[4] Pengfei, Q. Xipeng, C. Jifan, H. Xuanjing, Deep Fusion lstms for Text Semantic Matching, in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Vol. 1, 2016, pp. 1034-1043, \\nhttps://doi.org/ 10.18653/v1/P16-1098. \\n[5] Jonas, T. Aditya, Siamese Recurrent Architectures for Learning Sentence Similarity, in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), 2016, pp. 2786-2792. \\n[6] Jacob, C. M. Wei, L. Kenton, T. Kristina, Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding, in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019, pp. 4171-4186. \\n[7] Wissam, B. Fady, H. Hazem, Arabert: Transformer-based Model for Arabic Language Understanding, in Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on O ensive Language Detection, 2020, pp. 9-15. \\n[8] Lukovnikov, A. Fischer, J. Lehmann, Pretrained Transformers for Simple Question Answering Over Knowledge Graphs, ArXiv, abs/2001.11985, 2019. \\n[9] V. Aken, B. Winter, A. Loser, F. Gers, How Does BERT Answer Questions?: A Layer-Wise Analysis of Transformer Representations, in Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019. \\n[10] Chan, Y. Fan, A Recurrent BERT-based Model for Question Generation, in Proceedings of the Second Workshop on Machine Reading for Question Answering, 2019, pp. 154-162. \\n[11] Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, ALBERT: A Lite BERT for Self-supervised Learning of Language Representations, ArXiv, abs/1909.11942, 2020. \\n[12] Ngai, Y. Park, J. Chen, M. Parsapoor, Transformer-Based Models for Question Answering on COVID19, ArXiv, abs/2101.11432, 2021. \\n[13] Yu, L. Wu, Y. Deng, R. Mahindru, Q. Zeng, S. Guven, M. Jiang, A Technical Question Answering System with Transfer Learning, in Proceedings of the 2020 EMNLP (Systems Demonstrations), 2020, pp. 92-99. \\n[14] S. McCarley, R. Chakravarti, A. Sil, Structured Pruning of a BERT-based Question Answering Model, arXiv: Computation and Language, 2019. \\n[15] Almiman, N. Osman, M. Torki, Deep Neural Network Approach for Arabic Community Question Answering, Alexandria Engineering Journal, Vol. 59, 2020, pp. 4427-4434. \\n[16] Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, I. Polosukhin, Attention is all you Need, in Advances in Neural Information Processing Systems, 2017, pp. 5998-6008. \\n[17] T. Nguyen, A. C. Le, H. N. Nguyen, A Model of Convolutional Neural Network Combined with External Knowledge to Measure the Question Similarity for Community Question Answering Systems, International Journal of Machine Learning and Computing, Vol. 11, No. 3, 2021, pp. 194-201, https://doi.org/ 10.18178/ijmlc.2021.11.3.1035.\",\"PeriodicalId\":416488,\"journal\":{\"name\":\"VNU Journal of Science: Computer Science and Communication Engineering\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VNU Journal of Science: Computer Science and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25073/2588-1086/vnucsce.295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/vnucsce.295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

社区问答(cQA)问题要求任务给出一个问题,它的目标是从存储的问答元组数据集中选择最相关的问答元组(问题及其答案)。该任务的核心任务是测量输入问题与给定问答数据集中的问题之间的相似性(或关系)。根据我们的观察,既有各种各样的信息来源,也有不同的测量模型,可以为表明问题和问答元组之间的关系提供互补的知识。在本文中,我们解决了建模和组合多个知识来源的问题,以确定最相关的问答元组并对其进行排序。我们提出的模型将基于数据的不同表示以及不同的方法生成不同的特征,然后将这些信息集成到BERT模型中用于cQA问题的相似性度量。我们在SemEval 2016数据集上评估了我们提出的模型,并获得了最先进的结果。关键词社区问答,多知识来源,深度学习,BERT模型[1]C. Alberto, D. Bonadiman, G. D. S. Martino,阿拉伯语和英语论坛问答的答案和问题选择,semeval2016, 2016, pp. 896-903。[2]王晓明,王晓明,王晓明,基于语义的问答关系学习,中文信息学报,2016,pp. 391 - 391。[3]王志明,蔡廷生,基于句法树的社区问答服务问题搜索方法,中文信息学报,2009,pp. 187-194。[4]彭飞,祁希鹏,陈吉凡,宣静,基于深度融合的文本语义匹配方法,计算语言学年会论文集,2016,Vol. 1, pp. 1034-1043, https://doi.org/ 10.18653/v1/P16-1098。[5]杨建军,陈建军,基于重复结构的句子相似度学习方法,中文信息学报,2016,pp. 391 - 391。[6]刘志强,魏志明,李晓明,李晓明。基于深度双向变换的语言理解预训练方法,中文信息学报,2019,第6期,第1-4页。[7]王晓明,王晓明,王晓明。基于变换的阿拉伯语语言理解模型,中文信息学报,2014,第4期,第9-15页。[8]张晓明,张晓明,基于知识图谱的简单问答方法,计算机应用学报,2001,11(1),2019。[9]王晓东,王晓东,王晓东,《BERT如何回答问题》。:变压器表示的分层分析,第28届ACM信息与知识管理国际会议论文集,2019。[10]陈勇,范勇,一种基于bert的问题生成模型,中文信息学报,2019,pp. 154-162。[11]陈晓明,陈晓明,陈晓明。基于自监督学习的语言表征方法研究[j] .中文信息学报,2014(4):1102 - 1102,2020。[12]陈建军,陈建军,陈建军,基于自适应的新型冠状病毒肺炎问答模型,计算机应用与控制学报,2016,32(1):1 - 4。[13]于磊,吴丽,邓勇,马洪度,曾庆强,蒋明,一种基于迁移学习的技术问答系统,应用科学学报,2020,pp. 92-99。[14]张晓明,张晓明,张晓明,基于bert的问答模型,中文信息学报,2019。[15]张晓明,张晓明,基于深度神经网络的中文社区问答方法,中文信息学报,Vol. 59, 2020, pp. 357 - 357。[16]张晓明,张晓明,张晓明,张晓明。基于神经网络的神经网络信息处理研究,计算机科学,2017,第1期,第1 -6页。[17]阮涛,李爱春,阮洪宁,基于卷积神经网络的社区问答系统问题相似度度量模型,中文信息学报,Vol. 11, No. 3, 2021, pp. 194-201, https://doi.org/ 10.18178/ijmlc.2021.11.3.1035。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Learning Model of Multiple Knowledge Sources Integration for Community Question Answering
The community Question Answering (cQA) problem requires the task that given a question it aims at selecting the most related question-answer tuples (a question and its answers) from the stored question-answer tuples data set. The core mission of this task is to measure the similarity (or relationship) between an input question and questions from the given question-answer data set. Under our observation, there are either various information sources as well as di erent measurement models which can provide complementary knowledge for indicating the relationship between questions and question-answer tuples. In this paper we address the problem of modeling and combining multiple knowledge sources for determining and ranking the most related question-answer tuples given an input question for cQA problem. Our proposed model will generate di erent features based on di erent representations of the data as well as on di erent methods and then integrate this information into the BERT model for similarity measurement in cQA problem. We evaluate our proposed model on the SemEval 2016 data set and achieve the state-of-the-art result. Keywords Community question answering, Multi knowledge sources, Deep learning, The BERT model References [1] C. Alberto, D. Bonadiman, G. D. S. Martino, Answer and Question Selection for Question Answering on Arabic and English Fora, in Proceedings of SemEval-2016, 2016, pp. 896-903. [2] Filice, D. Croce, A. Moschitti, R. Basili, Learning Semantic Relations between Questions and Answers, in Proceedings of SemEval-2016, 2016, pp. 1116-1123. [3] Wang, Z. Ming, T. S. Chua, A Syntactic Tree Matching Approach to Finding Similar Questions in Community-based qa Services, in SIGIR, 2009, pp. 187-194. [4] Pengfei, Q. Xipeng, C. Jifan, H. Xuanjing, Deep Fusion lstms for Text Semantic Matching, in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Vol. 1, 2016, pp. 1034-1043, https://doi.org/ 10.18653/v1/P16-1098. [5] Jonas, T. Aditya, Siamese Recurrent Architectures for Learning Sentence Similarity, in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), 2016, pp. 2786-2792. [6] Jacob, C. M. Wei, L. Kenton, T. Kristina, Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding, in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019, pp. 4171-4186. [7] Wissam, B. Fady, H. Hazem, Arabert: Transformer-based Model for Arabic Language Understanding, in Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on O ensive Language Detection, 2020, pp. 9-15. [8] Lukovnikov, A. Fischer, J. Lehmann, Pretrained Transformers for Simple Question Answering Over Knowledge Graphs, ArXiv, abs/2001.11985, 2019. [9] V. Aken, B. Winter, A. Loser, F. Gers, How Does BERT Answer Questions?: A Layer-Wise Analysis of Transformer Representations, in Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019. [10] Chan, Y. Fan, A Recurrent BERT-based Model for Question Generation, in Proceedings of the Second Workshop on Machine Reading for Question Answering, 2019, pp. 154-162. [11] Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, ALBERT: A Lite BERT for Self-supervised Learning of Language Representations, ArXiv, abs/1909.11942, 2020. [12] Ngai, Y. Park, J. Chen, M. Parsapoor, Transformer-Based Models for Question Answering on COVID19, ArXiv, abs/2101.11432, 2021. [13] Yu, L. Wu, Y. Deng, R. Mahindru, Q. Zeng, S. Guven, M. Jiang, A Technical Question Answering System with Transfer Learning, in Proceedings of the 2020 EMNLP (Systems Demonstrations), 2020, pp. 92-99. [14] S. McCarley, R. Chakravarti, A. Sil, Structured Pruning of a BERT-based Question Answering Model, arXiv: Computation and Language, 2019. [15] Almiman, N. Osman, M. Torki, Deep Neural Network Approach for Arabic Community Question Answering, Alexandria Engineering Journal, Vol. 59, 2020, pp. 4427-4434. [16] Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, I. Polosukhin, Attention is all you Need, in Advances in Neural Information Processing Systems, 2017, pp. 5998-6008. [17] T. Nguyen, A. C. Le, H. N. Nguyen, A Model of Convolutional Neural Network Combined with External Knowledge to Measure the Question Similarity for Community Question Answering Systems, International Journal of Machine Learning and Computing, Vol. 11, No. 3, 2021, pp. 194-201, https://doi.org/ 10.18178/ijmlc.2021.11.3.1035.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aspect-Category based Sentiment Analysis with Unified Sequence-To-Sequence Transfer Transformers A Bandwidth-Efficient High-Performance RTL-Microarchitecture of 2D-Convolution for Deep Neural Networks Noisy-label propagation for Video Anomaly Detection with Graph Transformer Network FRSL: A Domain Specific Language to Specify Functional Requirements A Contract-Based Specification Method for Model Transformations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1