基于自动子聚类的声音事件识别分层建模

M. Niessen, T. V. Kasteren, A. Merentitis
{"title":"基于自动子聚类的声音事件识别分层建模","authors":"M. Niessen, T. V. Kasteren, A. Merentitis","doi":"10.1109/WASPAA.2013.6701862","DOIUrl":null,"url":null,"abstract":"The automatic recognition of sound events allows for novel applications in areas such as security, mobile and multimedia. In this work we present a hierarchical hidden Markov model for sound event detection that automatically clusters the inherent structure of the events into sub-events. We evaluate our approach on an IEEE audio challenge dataset consisting of office sound events and provide a systematic comparison of the various building blocks of our approach to demonstrate the effectiveness of incorporating certain dependencies in the model. The hierarchical hidden Markov model achieves an average frame-based F-measure recognition performance of 45.5% on a test dataset that was used to evaluate challenge submissions. We also show how the hierarchical model can be used as a meta-classifier, although in the particular application this did not lead to an increase in performance on the test dataset.","PeriodicalId":341888,"journal":{"name":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","volume":"349 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Hierarchical modeling using automated sub-clustering for sound event recognition\",\"authors\":\"M. Niessen, T. V. Kasteren, A. Merentitis\",\"doi\":\"10.1109/WASPAA.2013.6701862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic recognition of sound events allows for novel applications in areas such as security, mobile and multimedia. In this work we present a hierarchical hidden Markov model for sound event detection that automatically clusters the inherent structure of the events into sub-events. We evaluate our approach on an IEEE audio challenge dataset consisting of office sound events and provide a systematic comparison of the various building blocks of our approach to demonstrate the effectiveness of incorporating certain dependencies in the model. The hierarchical hidden Markov model achieves an average frame-based F-measure recognition performance of 45.5% on a test dataset that was used to evaluate challenge submissions. We also show how the hierarchical model can be used as a meta-classifier, although in the particular application this did not lead to an increase in performance on the test dataset.\",\"PeriodicalId\":341888,\"journal\":{\"name\":\"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"volume\":\"349 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASPAA.2013.6701862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA.2013.6701862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

声音事件的自动识别允许在安全、移动和多媒体等领域的新应用。在这项工作中,我们提出了一种用于声音事件检测的分层隐马尔可夫模型,该模型自动将事件的固有结构聚类成子事件。我们在由办公室声音事件组成的IEEE音频挑战数据集上评估了我们的方法,并提供了我们方法的各种构建块的系统比较,以证明在模型中合并某些依赖关系的有效性。在用于评估挑战提交的测试数据集上,分层隐马尔可夫模型实现了平均45.5%的基于帧的f测度识别性能。我们还展示了如何将分层模型用作元分类器,尽管在特定的应用程序中,这并没有导致测试数据集上性能的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical modeling using automated sub-clustering for sound event recognition
The automatic recognition of sound events allows for novel applications in areas such as security, mobile and multimedia. In this work we present a hierarchical hidden Markov model for sound event detection that automatically clusters the inherent structure of the events into sub-events. We evaluate our approach on an IEEE audio challenge dataset consisting of office sound events and provide a systematic comparison of the various building blocks of our approach to demonstrate the effectiveness of incorporating certain dependencies in the model. The hierarchical hidden Markov model achieves an average frame-based F-measure recognition performance of 45.5% on a test dataset that was used to evaluate challenge submissions. We also show how the hierarchical model can be used as a meta-classifier, although in the particular application this did not lead to an increase in performance on the test dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using articulation index band correlations to objectively estimate speech intelligibility consistent with the modified rhyme test Roomprints for forensic audio applications The geometry of sound-source localization using non-coplanar microphone arrays Sparse representation and epoch estimation of voiced speech Spotforming using distributed microphone arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1