具有摄动三元组的耦合簇模型的可伸缩异构执行

Jinsung Kim, Ajay Panyala, B. Peng, K. Kowalski, P. Sadayappan, S. Krishnamoorthy
{"title":"具有摄动三元组的耦合簇模型的可伸缩异构执行","authors":"Jinsung Kim, Ajay Panyala, B. Peng, K. Kowalski, P. Sadayappan, S. Krishnamoorthy","doi":"10.1109/SC41405.2020.00083","DOIUrl":null,"url":null,"abstract":"The CCSD(T) coupled-cluster model with perturbative triples is considered a gold standard for computational modeling of the correlated behavior of electrons in molecular systems. A fundamental constraint is the relatively small global-memory capacity in GPUs compared to the main-memory capacity on host nodes, necessitating relatively smaller tile sizes for high-dimensional tensor contractions in NWChem’s GPU-accelerated implementation of the CCSD(T) method. A coordinated redesign is described to address this limitation and associated data movement overheads, including a novel fused GPU kernel for a set of tensor contractions, along with inter-node communication optimization and data caching. The new implementation of GPU-accelerated CCSD(T) improves overall performance by $3.4 \\times$. Finally, we discuss the trade-offs in using this fused algorithm on current and future supercomputing platforms.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Scalable Heterogeneous Execution of a Coupled-Cluster Model with Perturbative Triples\",\"authors\":\"Jinsung Kim, Ajay Panyala, B. Peng, K. Kowalski, P. Sadayappan, S. Krishnamoorthy\",\"doi\":\"10.1109/SC41405.2020.00083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The CCSD(T) coupled-cluster model with perturbative triples is considered a gold standard for computational modeling of the correlated behavior of electrons in molecular systems. A fundamental constraint is the relatively small global-memory capacity in GPUs compared to the main-memory capacity on host nodes, necessitating relatively smaller tile sizes for high-dimensional tensor contractions in NWChem’s GPU-accelerated implementation of the CCSD(T) method. A coordinated redesign is described to address this limitation and associated data movement overheads, including a novel fused GPU kernel for a set of tensor contractions, along with inter-node communication optimization and data caching. The new implementation of GPU-accelerated CCSD(T) improves overall performance by $3.4 \\\\times$. Finally, we discuss the trade-offs in using this fused algorithm on current and future supercomputing platforms.\",\"PeriodicalId\":424429,\"journal\":{\"name\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC41405.2020.00083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

具有摄动三元组的CCSD(T)耦合簇模型被认为是分子系统中电子相关行为计算建模的金标准。一个基本的限制是gpu的全局内存容量相对于主机节点上的主内存容量相对较小,因此在NWChem的gpu加速CCSD(T)方法实现中,高维张量收缩需要相对较小的块大小。本文描述了一种协调的重新设计,以解决这一限制和相关的数据移动开销,包括用于一组张量收缩的新型融合GPU内核,以及节点间通信优化和数据缓存。gpu加速CCSD(T)的新实现将整体性能提高了3.4倍。最后,我们讨论了在当前和未来的超级计算平台上使用这种融合算法的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable Heterogeneous Execution of a Coupled-Cluster Model with Perturbative Triples
The CCSD(T) coupled-cluster model with perturbative triples is considered a gold standard for computational modeling of the correlated behavior of electrons in molecular systems. A fundamental constraint is the relatively small global-memory capacity in GPUs compared to the main-memory capacity on host nodes, necessitating relatively smaller tile sizes for high-dimensional tensor contractions in NWChem’s GPU-accelerated implementation of the CCSD(T) method. A coordinated redesign is described to address this limitation and associated data movement overheads, including a novel fused GPU kernel for a set of tensor contractions, along with inter-node communication optimization and data caching. The new implementation of GPU-accelerated CCSD(T) improves overall performance by $3.4 \times$. Finally, we discuss the trade-offs in using this fused algorithm on current and future supercomputing platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CAB-MPI: Exploring Interprocess Work-Stealing towards Balanced MPI Communication Toward Realization of Numerical Towing-Tank Tests by Wall-Resolved Large Eddy Simulation based on 32 Billion Grid Finite-Element Computation Scalable yet Rigorous Floating-Point Error Analysis Scalable Knowledge Graph Analytics at 136 Petaflop/s BORA: A Bag Optimizer for Robotic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1