关联规则挖掘的改进Apriori算法研究

Sheng Chai, Jia Yang, Yang Cheng
{"title":"关联规则挖掘的改进Apriori算法研究","authors":"Sheng Chai, Jia Yang, Yang Cheng","doi":"10.1109/ICSSSM.2007.4280173","DOIUrl":null,"url":null,"abstract":"The efficiency of mining association rules is an important field of Knowledge Discovery in Databases. The Apriori algorithm is a classical algorithm in mining association rules. This paper presents an improved Apriori algorithm to increase the efficiency of generating association rules. This algorithm adopts a new method to reduce the redundant generation of sub-itemsets during pruning the candidate itemsets, which can form directly the set of frequent itemsets and eliminate candidates having a subset that is not frequent in the meantime. This algorithm can raise the probability of obtaining information in scanning database and reduce the potential scale of itemsets.","PeriodicalId":153603,"journal":{"name":"2007 International Conference on Service Systems and Service Management","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":"{\"title\":\"The Research of Improved Apriori Algorithm for Mining Association Rules\",\"authors\":\"Sheng Chai, Jia Yang, Yang Cheng\",\"doi\":\"10.1109/ICSSSM.2007.4280173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficiency of mining association rules is an important field of Knowledge Discovery in Databases. The Apriori algorithm is a classical algorithm in mining association rules. This paper presents an improved Apriori algorithm to increase the efficiency of generating association rules. This algorithm adopts a new method to reduce the redundant generation of sub-itemsets during pruning the candidate itemsets, which can form directly the set of frequent itemsets and eliminate candidates having a subset that is not frequent in the meantime. This algorithm can raise the probability of obtaining information in scanning database and reduce the potential scale of itemsets.\",\"PeriodicalId\":153603,\"journal\":{\"name\":\"2007 International Conference on Service Systems and Service Management\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Service Systems and Service Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSSM.2007.4280173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Service Systems and Service Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSSM.2007.4280173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

摘要

关联规则的挖掘效率是数据库知识发现的一个重要领域。Apriori算法是挖掘关联规则的经典算法。为了提高关联规则生成的效率,本文提出了一种改进的Apriori算法。该算法在对候选项集进行剪枝时,采用了一种新的方法来减少子项集的冗余产生,可以直接形成频繁项集,同时剔除具有非频繁子集的候选项集。该算法提高了扫描数据库中信息获取的概率,减小了项目集的潜在规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Research of Improved Apriori Algorithm for Mining Association Rules
The efficiency of mining association rules is an important field of Knowledge Discovery in Databases. The Apriori algorithm is a classical algorithm in mining association rules. This paper presents an improved Apriori algorithm to increase the efficiency of generating association rules. This algorithm adopts a new method to reduce the redundant generation of sub-itemsets during pruning the candidate itemsets, which can form directly the set of frequent itemsets and eliminate candidates having a subset that is not frequent in the meantime. This algorithm can raise the probability of obtaining information in scanning database and reduce the potential scale of itemsets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game Analysis about Utility Pricing of Power Plant Based on the Coordination between Power and Environment Collaborative Analysis on Modern Logistics and Finance The Relationship between Perceived Performance and Consumer Satisfaction: The Moderating Role of Price, Price Consciousness and Conspicuous Consumption The Impact of HRMIS on Enterprise Social Capital: a View from Social Network Research of Combinative Incentives of Manager based on Services Innovation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1