{"title":"基于马尔可夫边界的模块化动态贝叶斯网络在多感官环境下的情绪预测","authors":"Kyon-Mo Yang, Sung-Bae Cho","doi":"10.1109/ICNC.2014.6976000","DOIUrl":null,"url":null,"abstract":"Recently, a lot of the fields such as education, marketing, and design have applied human's emotion stimuli to increase the effectiveness of services as well as user-computer interaction. Predicting the emotion in the field is important to decide relevant stimuli because emotion has the element of uncertainty and is sensitive to sensory stimuli. In this paper, we propose a modular dynamic Bayesian network based on Markov boundary theory to predict current emotion. A relation between emotion and stimuli is identified as four types of structure. The proposed method was verified by several experiments. The computational time is 0.032 second and the average accuracy rate is 80.97%, which are quite promising for a realistic system.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modular dynamic Bayesian network based on Markov boundary for emotion prediction in multi-sensory environment\",\"authors\":\"Kyon-Mo Yang, Sung-Bae Cho\",\"doi\":\"10.1109/ICNC.2014.6976000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a lot of the fields such as education, marketing, and design have applied human's emotion stimuli to increase the effectiveness of services as well as user-computer interaction. Predicting the emotion in the field is important to decide relevant stimuli because emotion has the element of uncertainty and is sensitive to sensory stimuli. In this paper, we propose a modular dynamic Bayesian network based on Markov boundary theory to predict current emotion. A relation between emotion and stimuli is identified as four types of structure. The proposed method was verified by several experiments. The computational time is 0.032 second and the average accuracy rate is 80.97%, which are quite promising for a realistic system.\",\"PeriodicalId\":208779,\"journal\":{\"name\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2014.6976000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6976000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modular dynamic Bayesian network based on Markov boundary for emotion prediction in multi-sensory environment
Recently, a lot of the fields such as education, marketing, and design have applied human's emotion stimuli to increase the effectiveness of services as well as user-computer interaction. Predicting the emotion in the field is important to decide relevant stimuli because emotion has the element of uncertainty and is sensitive to sensory stimuli. In this paper, we propose a modular dynamic Bayesian network based on Markov boundary theory to predict current emotion. A relation between emotion and stimuli is identified as four types of structure. The proposed method was verified by several experiments. The computational time is 0.032 second and the average accuracy rate is 80.97%, which are quite promising for a realistic system.