基于强化学习的自构建模糊神经网络交流电机驱动控制器

Zhao Jin, Wang Jianjing, Z. Huajun, Yang Wei
{"title":"基于强化学习的自构建模糊神经网络交流电机驱动控制器","authors":"Zhao Jin, Wang Jianjing, Z. Huajun, Yang Wei","doi":"10.1109/ICIEA.2011.5975717","DOIUrl":null,"url":null,"abstract":"A self-constructing fuzzy neural network (SCFNN) based on reinforcement learning is proposed in this study. In the SCFNN, structure and parameter learning are implemented simultaneously. Structure learning is based on uniform division of the input space and distribution of membership function. The parameters are trained by the reinforcement learning based on genetic algorithm. Several simulations are provided to demonstrate the effectiveness of the proposed SCFNN control stratagem with the implementation of AC motor speed drive. The simulation results show that the AC drive system with SCFNN has good anti-disturbance performance while the load change randomly.","PeriodicalId":304500,"journal":{"name":"2011 6th IEEE Conference on Industrial Electronics and Applications","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning based self-constructing fuzzy neural network controller for AC motor drives\",\"authors\":\"Zhao Jin, Wang Jianjing, Z. Huajun, Yang Wei\",\"doi\":\"10.1109/ICIEA.2011.5975717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A self-constructing fuzzy neural network (SCFNN) based on reinforcement learning is proposed in this study. In the SCFNN, structure and parameter learning are implemented simultaneously. Structure learning is based on uniform division of the input space and distribution of membership function. The parameters are trained by the reinforcement learning based on genetic algorithm. Several simulations are provided to demonstrate the effectiveness of the proposed SCFNN control stratagem with the implementation of AC motor speed drive. The simulation results show that the AC drive system with SCFNN has good anti-disturbance performance while the load change randomly.\",\"PeriodicalId\":304500,\"journal\":{\"name\":\"2011 6th IEEE Conference on Industrial Electronics and Applications\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th IEEE Conference on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2011.5975717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2011.5975717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于强化学习的自构造模糊神经网络(SCFNN)。在SCFNN中,结构学习和参数学习是同时进行的。结构学习基于输入空间的统一划分和隶属函数的分布。采用基于遗传算法的强化学习对参数进行训练。仿真结果验证了该控制策略在交流电机转速驱动下的有效性。仿真结果表明,采用自适应自适应神经网络的交流传动系统在负荷随机变化时具有良好的抗干扰性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement learning based self-constructing fuzzy neural network controller for AC motor drives
A self-constructing fuzzy neural network (SCFNN) based on reinforcement learning is proposed in this study. In the SCFNN, structure and parameter learning are implemented simultaneously. Structure learning is based on uniform division of the input space and distribution of membership function. The parameters are trained by the reinforcement learning based on genetic algorithm. Several simulations are provided to demonstrate the effectiveness of the proposed SCFNN control stratagem with the implementation of AC motor speed drive. The simulation results show that the AC drive system with SCFNN has good anti-disturbance performance while the load change randomly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The application of soft-switching and frequency synchronization technologies in electromagnetic heater design Modified nearest neighbor fuzzy classification algorithm for ship target recognition The HPCXFGA method of main navigation performance and structure characteristic of the high-speed monohull inland ship Transformerless high step-up DC-DC converter with Cockcroft-Walton voltage multiplier Area efficient system-on-programmable-chip design for a wireless touch-triggered machining probe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1