一种新的递归卷积神经网络语音手写生成技术

Aarushi Dua, A. Bhatia, B. Kalra, Srishti Vashishtha
{"title":"一种新的递归卷积神经网络语音手写生成技术","authors":"Aarushi Dua, A. Bhatia, B. Kalra, Srishti Vashishtha","doi":"10.1109/ICIRCA51532.2021.9544925","DOIUrl":null,"url":null,"abstract":"This paper presents a way for generating online handwriting using voice. To build this tool, two broad steps are required: Voice Recognition using Google Speech-to-text API and Handwritten Recognition using a combination of Recurrent and Convolutional neural networks (RCNN). The model is evaluated on IAM and Electronic Fonts datasets that contains handwritten images. This research work has reported the result of training data based on Connectionist Temporal Classification (CTC) loss. CTC also has a function named decoder to predict vector data generated by RCNN into understandable text.","PeriodicalId":245244,"journal":{"name":"2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Recurrent and Convolutional Neural Network Technique for Generating Handwriting from Voice\",\"authors\":\"Aarushi Dua, A. Bhatia, B. Kalra, Srishti Vashishtha\",\"doi\":\"10.1109/ICIRCA51532.2021.9544925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a way for generating online handwriting using voice. To build this tool, two broad steps are required: Voice Recognition using Google Speech-to-text API and Handwritten Recognition using a combination of Recurrent and Convolutional neural networks (RCNN). The model is evaluated on IAM and Electronic Fonts datasets that contains handwritten images. This research work has reported the result of training data based on Connectionist Temporal Classification (CTC) loss. CTC also has a function named decoder to predict vector data generated by RCNN into understandable text.\",\"PeriodicalId\":245244,\"journal\":{\"name\":\"2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIRCA51532.2021.9544925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIRCA51532.2021.9544925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用语音生成在线笔迹的方法。要构建这个工具,需要两个大的步骤:使用谷歌语音到文本API的语音识别和使用循环和卷积神经网络(RCNN)组合的手写识别。该模型在包含手写图像的IAM和电子字体数据集上进行评估。本研究报告了基于连接时间分类(CTC)损失的训练数据的结果。CTC还有一个名为decoder的函数,用于将RCNN生成的矢量数据预测为可理解的文本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Recurrent and Convolutional Neural Network Technique for Generating Handwriting from Voice
This paper presents a way for generating online handwriting using voice. To build this tool, two broad steps are required: Voice Recognition using Google Speech-to-text API and Handwritten Recognition using a combination of Recurrent and Convolutional neural networks (RCNN). The model is evaluated on IAM and Electronic Fonts datasets that contains handwritten images. This research work has reported the result of training data based on Connectionist Temporal Classification (CTC) loss. CTC also has a function named decoder to predict vector data generated by RCNN into understandable text.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Morse Code Detector and Decoder using Eye Blinks Detection of Social and Newsworthy events using Tweet Analysis An Efficient Workflow Management Model for Fog Computing Application Analysis of Image Enhancement Method in Deep Learning Image Recognition Scene Virtual Learning Assistance for Students
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1