基于redr的980 nm SL SQW InGaAs激光二极管线缺陷突然失效动力学研究

A. Bonfiglio, M. Casu, M. Vanzi, F. Magistrali, M. Maini, G. Salmini
{"title":"基于redr的980 nm SL SQW InGaAs激光二极管线缺陷突然失效动力学研究","authors":"A. Bonfiglio, M. Casu, M. Vanzi, F. Magistrali, M. Maini, G. Salmini","doi":"10.1109/RELPHY.1998.670459","DOIUrl":null,"url":null,"abstract":"Recombination-enhanced-defect-reaction (REDR) (Kymerling, Solid State Electron. vol 21, pp. 1391-1401, 1978) has been recently proposed (Magistrali et al. 1997) as the driving mechanism for sudden failures in 980 nm SL SQW InGaAs pump laser diodes for active fiber optics. The proposal follows a set of observations on life-tested devices that coherently lead to link the ultimate catastrophic failure to the growth of line defects from outside to inside the active layer. The most intriguing feature of the detected failure mode remains its sudden occurrence during constant-current life-tests, which is the total loss of the laser emission within a few tens of hours, after several hundred hours of perfectly regular operation. No correlation has ever been found between the occurence of that phenomenon and any of the many initial measurements that have been performed. The paper aims to account for the observed kinetics, based on the simple model of a native ideal point defect located within a few diffusion lengths from the edge of the depleted region of a laser diode. Its effect on the laser current is quantified, as well as the energy released to the lattice per unit time because of recombination at the defect neighbourhoods. The key point is to correlate that energy with some growth direction and speed, which leads to a model for the degradation kinetics.","PeriodicalId":196556,"journal":{"name":"1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual (Cat. No.98CH36173)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"REDR-based kinetics for line defects leading to sudden failures in 980 nm SL SQW InGaAs laser diodes\",\"authors\":\"A. Bonfiglio, M. Casu, M. Vanzi, F. Magistrali, M. Maini, G. Salmini\",\"doi\":\"10.1109/RELPHY.1998.670459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recombination-enhanced-defect-reaction (REDR) (Kymerling, Solid State Electron. vol 21, pp. 1391-1401, 1978) has been recently proposed (Magistrali et al. 1997) as the driving mechanism for sudden failures in 980 nm SL SQW InGaAs pump laser diodes for active fiber optics. The proposal follows a set of observations on life-tested devices that coherently lead to link the ultimate catastrophic failure to the growth of line defects from outside to inside the active layer. The most intriguing feature of the detected failure mode remains its sudden occurrence during constant-current life-tests, which is the total loss of the laser emission within a few tens of hours, after several hundred hours of perfectly regular operation. No correlation has ever been found between the occurence of that phenomenon and any of the many initial measurements that have been performed. The paper aims to account for the observed kinetics, based on the simple model of a native ideal point defect located within a few diffusion lengths from the edge of the depleted region of a laser diode. Its effect on the laser current is quantified, as well as the energy released to the lattice per unit time because of recombination at the defect neighbourhoods. The key point is to correlate that energy with some growth direction and speed, which leads to a model for the degradation kinetics.\",\"PeriodicalId\":196556,\"journal\":{\"name\":\"1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual (Cat. No.98CH36173)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual (Cat. No.98CH36173)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RELPHY.1998.670459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual (Cat. No.98CH36173)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.1998.670459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

重组增强缺陷反应(REDR) (Kymerling,固态电子。最近(Magistrali et al. 1997)提出了用于有源光纤的980 nm SL SQW InGaAs泵浦激光二极管突然失效的驱动机制。该提案遵循了对经过寿命测试的设备的一系列观察,这些观察一致地将最终的灾难性故障与从外部到内部的线路缺陷的增长联系起来。检测到的故障模式最有趣的特征是它在恒流寿命测试期间突然发生,即经过数百小时的完全正常运行后,在几十小时内激光发射完全丧失。这种现象的发生与许多已经进行的初步测量之间没有任何关联。本文的目的是解释观察到的动力学,基于一个简单的模型,一个天然的理想点缺陷位于几个扩散长度从激光二极管的耗尽区边缘。它对激光电流的影响是量化的,以及每单位时间释放到晶格的能量,因为在缺陷邻域重组。关键是将能量与某些生长方向和速度联系起来,从而得到降解动力学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
REDR-based kinetics for line defects leading to sudden failures in 980 nm SL SQW InGaAs laser diodes
Recombination-enhanced-defect-reaction (REDR) (Kymerling, Solid State Electron. vol 21, pp. 1391-1401, 1978) has been recently proposed (Magistrali et al. 1997) as the driving mechanism for sudden failures in 980 nm SL SQW InGaAs pump laser diodes for active fiber optics. The proposal follows a set of observations on life-tested devices that coherently lead to link the ultimate catastrophic failure to the growth of line defects from outside to inside the active layer. The most intriguing feature of the detected failure mode remains its sudden occurrence during constant-current life-tests, which is the total loss of the laser emission within a few tens of hours, after several hundred hours of perfectly regular operation. No correlation has ever been found between the occurence of that phenomenon and any of the many initial measurements that have been performed. The paper aims to account for the observed kinetics, based on the simple model of a native ideal point defect located within a few diffusion lengths from the edge of the depleted region of a laser diode. Its effect on the laser current is quantified, as well as the energy released to the lattice per unit time because of recombination at the defect neighbourhoods. The key point is to correlate that energy with some growth direction and speed, which leads to a model for the degradation kinetics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stress-induced voiding in stacked tungsten via structure Dislocation dynamics in heterojunction bipolar transistor under current induced thermal stress Effect of H/sub 2/O partial pressure and temperature during Ti sputtering on texture and electromigration in AlSiCu-Ti-TiN-Ti metallization Backside localization of open and shorted IC interconnections Full-chip reliability analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1