基于CBERS-02B的喀斯特地区土地利用专项信息提取方法研究及应用分析——以贵州都匀为例

Juan Hu, M. Luo, Yulun An
{"title":"基于CBERS-02B的喀斯特地区土地利用专项信息提取方法研究及应用分析——以贵州都匀为例","authors":"Juan Hu, M. Luo, Yulun An","doi":"10.1117/12.910422","DOIUrl":null,"url":null,"abstract":"This paper explores the optimal methods for processing CBERS-02B images and using them to classify the land uses of karst mountain areas with 3S technologies, especially the RS digital image processing technology. Through multiple experiments and analysis, the difficulty of CBERS-02B images in distinguishing water from mountain shades, construction land from dry land and paddy field are satisfactorily removed. And the combination of band 421, based on OIF method, is proved optimal for classifying the land uses of karst areas. After comparing and evaluating the effect of HIS, PCA and HPC based image fusion methods, the HIS transformation based image fusion method is found best for CBERS-02B HR and CCD data fusion in the case of karst highland mountains. Based on the experiments, this paper proves that CBERS images are capable of large scale land use classification for karst areas, a competent substitute of TM images for karst mountain area land use survey.","PeriodicalId":340728,"journal":{"name":"China Symposium on Remote Sensing","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The investigation of special information distilling method of land use in karst area based on CBERS-02B and analysis on application: a case study of Duyun, Guizhou\",\"authors\":\"Juan Hu, M. Luo, Yulun An\",\"doi\":\"10.1117/12.910422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the optimal methods for processing CBERS-02B images and using them to classify the land uses of karst mountain areas with 3S technologies, especially the RS digital image processing technology. Through multiple experiments and analysis, the difficulty of CBERS-02B images in distinguishing water from mountain shades, construction land from dry land and paddy field are satisfactorily removed. And the combination of band 421, based on OIF method, is proved optimal for classifying the land uses of karst areas. After comparing and evaluating the effect of HIS, PCA and HPC based image fusion methods, the HIS transformation based image fusion method is found best for CBERS-02B HR and CCD data fusion in the case of karst highland mountains. Based on the experiments, this paper proves that CBERS images are capable of large scale land use classification for karst areas, a competent substitute of TM images for karst mountain area land use survey.\",\"PeriodicalId\":340728,\"journal\":{\"name\":\"China Symposium on Remote Sensing\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Symposium on Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.910422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Symposium on Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.910422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了利用3S技术,特别是RS数字图像处理技术,对CBERS-02B图像进行处理的最佳方法,并利用CBERS-02B图像进行喀斯特山区土地利用分类。通过多次实验和分析,较好地消除了CBERS-02B图像在山阴、建设用地、旱地和水田中区分水体的困难。结果表明,基于OIF方法的421波段组合是喀斯特地区土地利用分类的最佳组合。对比评价了基于HIS、PCA和HPC的图像融合方法,发现基于HIS变换的图像融合方法最适合喀斯特高原山区的CBERS-02B HR和CCD数据融合。通过实验证明,CBERS影像能够对喀斯特地区进行大尺度的土地利用分类,可以很好地替代TM影像进行喀斯特山区土地利用调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The investigation of special information distilling method of land use in karst area based on CBERS-02B and analysis on application: a case study of Duyun, Guizhou
This paper explores the optimal methods for processing CBERS-02B images and using them to classify the land uses of karst mountain areas with 3S technologies, especially the RS digital image processing technology. Through multiple experiments and analysis, the difficulty of CBERS-02B images in distinguishing water from mountain shades, construction land from dry land and paddy field are satisfactorily removed. And the combination of band 421, based on OIF method, is proved optimal for classifying the land uses of karst areas. After comparing and evaluating the effect of HIS, PCA and HPC based image fusion methods, the HIS transformation based image fusion method is found best for CBERS-02B HR and CCD data fusion in the case of karst highland mountains. Based on the experiments, this paper proves that CBERS images are capable of large scale land use classification for karst areas, a competent substitute of TM images for karst mountain area land use survey.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on optimal path planning algorithm of task-oriented optical remote sensing satellites On-orbit geometric calibration and validation of Optical-1 HR Effectiveness analysis of ACOS-Xco2 bias correction method with GEOS-Chem model results Research on geometric rectification of the Large FOV Linear Array Whiskbroom Image Temporal and spatial analysis of global GOSAT XCO2 variations characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1