背包问题禁忌搜索方法的对立启发策略

Victoria Miranda-Burgos, Nicolás Rojas-Morales
{"title":"背包问题禁忌搜索方法的对立启发策略","authors":"Victoria Miranda-Burgos, Nicolás Rojas-Morales","doi":"10.1109/CEC55065.2022.9870266","DOIUrl":null,"url":null,"abstract":"The family of Knapsack Problems (KP) has been relevant in many works and studies as their use in modeling, simplifying complex problems or decision-making processes. Because of its importance, several metaheuristic algorithms have been designed or evaluated using this type of problem. In some variants of the KP, Tabu Search approaches are competitive or part of the state-of-the-art. This work proposes opposition-inspired strategies to improve the diversification of Tabu Search (TS) algorithms proposed for solving KPs. We use the well-known TSTS algorithm to evaluate our strategies, designed for solving the Multidemand Multidimensional Knapsack Problem. Results show that the usage of our opposite strategies allow the target algorithm to improve its performance in several benchmark instances.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Opposition-Inspired Strategies for Tabu Search approaches proposed for Knapsack Problems\",\"authors\":\"Victoria Miranda-Burgos, Nicolás Rojas-Morales\",\"doi\":\"10.1109/CEC55065.2022.9870266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The family of Knapsack Problems (KP) has been relevant in many works and studies as their use in modeling, simplifying complex problems or decision-making processes. Because of its importance, several metaheuristic algorithms have been designed or evaluated using this type of problem. In some variants of the KP, Tabu Search approaches are competitive or part of the state-of-the-art. This work proposes opposition-inspired strategies to improve the diversification of Tabu Search (TS) algorithms proposed for solving KPs. We use the well-known TSTS algorithm to evaluate our strategies, designed for solving the Multidemand Multidimensional Knapsack Problem. Results show that the usage of our opposite strategies allow the target algorithm to improve its performance in several benchmark instances.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"277 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

背包问题族(KP)因其在建模、简化复杂问题或决策过程中的应用而在许多工作和研究中得到了应用。由于它的重要性,一些元启发式算法已经被设计或评估使用这类问题。在KP的一些变体中,禁忌搜索方法是有竞争力的,或者是最先进技术的一部分。这项工作提出了对立启发的策略,以提高禁忌搜索(TS)算法的多样化,提出了解决kp。我们使用著名的TSTS算法来评估我们的策略,旨在解决多需求多维背包问题。结果表明,使用我们的相反策略允许目标算法在几个基准实例中提高其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Opposition-Inspired Strategies for Tabu Search approaches proposed for Knapsack Problems
The family of Knapsack Problems (KP) has been relevant in many works and studies as their use in modeling, simplifying complex problems or decision-making processes. Because of its importance, several metaheuristic algorithms have been designed or evaluated using this type of problem. In some variants of the KP, Tabu Search approaches are competitive or part of the state-of-the-art. This work proposes opposition-inspired strategies to improve the diversification of Tabu Search (TS) algorithms proposed for solving KPs. We use the well-known TSTS algorithm to evaluate our strategies, designed for solving the Multidemand Multidimensional Knapsack Problem. Results show that the usage of our opposite strategies allow the target algorithm to improve its performance in several benchmark instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1