基于两层竞争Hopfield神经网络的晶圆缺陷检测

Chan-Yu Chang, Si-Yan Lin, M. Jeng
{"title":"基于两层竞争Hopfield神经网络的晶圆缺陷检测","authors":"Chan-Yu Chang, Si-Yan Lin, M. Jeng","doi":"10.1109/ICNSC.2005.1461344","DOIUrl":null,"url":null,"abstract":"The occurrence of defect on a wafer may result in losing the yield ratio. The defective regions are usually identified through visual judgment with the aid of a scanning electron microscope and many people visually check wafers and hand-mark their defective regions leading to a significant amount of personnel cost. In addition, potential misjudgment may be introduced due to human fatigue. In this paper, a two-layer Hopfield neural network called the competitive Hopfield wafer-defect detection neural network (CHWDNN) is proposed for detecting the defective regions of wafer image. The CHWDNN extends the one-layer 2-D Hopfield neural network at the original image plane to a two-layer 3-D Hopfield neural network with defect detection to be implemented on its third dimension. With the extended 3-D architecture, the network is capable of incorporating a pixel's spatial information into a pixel-classifying procedure. The experimental results show the CHWDNN successfully identifies the defective regions on wafers images with good performances.","PeriodicalId":313251,"journal":{"name":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Two-layer competitive Hopfield neural network for wafer defect detection\",\"authors\":\"Chan-Yu Chang, Si-Yan Lin, M. Jeng\",\"doi\":\"10.1109/ICNSC.2005.1461344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The occurrence of defect on a wafer may result in losing the yield ratio. The defective regions are usually identified through visual judgment with the aid of a scanning electron microscope and many people visually check wafers and hand-mark their defective regions leading to a significant amount of personnel cost. In addition, potential misjudgment may be introduced due to human fatigue. In this paper, a two-layer Hopfield neural network called the competitive Hopfield wafer-defect detection neural network (CHWDNN) is proposed for detecting the defective regions of wafer image. The CHWDNN extends the one-layer 2-D Hopfield neural network at the original image plane to a two-layer 3-D Hopfield neural network with defect detection to be implemented on its third dimension. With the extended 3-D architecture, the network is capable of incorporating a pixel's spatial information into a pixel-classifying procedure. The experimental results show the CHWDNN successfully identifies the defective regions on wafers images with good performances.\",\"PeriodicalId\":313251,\"journal\":{\"name\":\"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC.2005.1461344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC.2005.1461344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

晶圆片上缺陷的出现可能导致成品率的下降。缺陷区域通常是借助扫描电子显微镜通过视觉判断来识别的,许多人肉眼检查晶圆并手工标记其缺陷区域,这导致了大量的人员成本。此外,由于人的疲劳,可能会引入潜在的误判。本文提出了一种两层Hopfield神经网络,称为竞争Hopfield晶圆缺陷检测神经网络(CHWDNN),用于检测晶圆图像的缺陷区域。CHWDNN将原图像平面上的单层二维Hopfield神经网络扩展为二层三维Hopfield神经网络,并在其三维上实现缺陷检测。通过扩展的三维结构,该网络能够将像素的空间信息整合到像素分类过程中。实验结果表明,CHWDNN能较好地识别出晶圆图像上的缺陷区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-layer competitive Hopfield neural network for wafer defect detection
The occurrence of defect on a wafer may result in losing the yield ratio. The defective regions are usually identified through visual judgment with the aid of a scanning electron microscope and many people visually check wafers and hand-mark their defective regions leading to a significant amount of personnel cost. In addition, potential misjudgment may be introduced due to human fatigue. In this paper, a two-layer Hopfield neural network called the competitive Hopfield wafer-defect detection neural network (CHWDNN) is proposed for detecting the defective regions of wafer image. The CHWDNN extends the one-layer 2-D Hopfield neural network at the original image plane to a two-layer 3-D Hopfield neural network with defect detection to be implemented on its third dimension. With the extended 3-D architecture, the network is capable of incorporating a pixel's spatial information into a pixel-classifying procedure. The experimental results show the CHWDNN successfully identifies the defective regions on wafers images with good performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic robust stability analysis for Markovian jumping neural networks with time delays Modeling and performance evaluation of collision resolution algorithms for LonWorks control networks The organization model research of SM crowd Forced and constrained consensus among cooperating agents Routing in stochastic networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1