非线性傅立叶谱计算的神经网络

E. Sedov, Pedro J. Freire, I. Chekhovskoy, S. Turitsyn, J. Prilepsky
{"title":"非线性傅立叶谱计算的神经网络","authors":"E. Sedov, Pedro J. Freire, I. Chekhovskoy, S. Turitsyn, J. Prilepsky","doi":"10.1109/ecoc52684.2021.9605844","DOIUrl":null,"url":null,"abstract":"We demonstrate that neural networks can outperform conventional numerical nonlinear Fourier transform algorithms for processing the noise-corrupted optical signal. Applying the Bayesian hyper-parameters optimisation, we design the architecture of neural networks capable to compute nonlinear signal spectrum at low SNR more accurately than conventional algorithms.","PeriodicalId":117375,"journal":{"name":"2021 European Conference on Optical Communication (ECOC)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Networks For Nonlinear Fourier Spectrum Computation\",\"authors\":\"E. Sedov, Pedro J. Freire, I. Chekhovskoy, S. Turitsyn, J. Prilepsky\",\"doi\":\"10.1109/ecoc52684.2021.9605844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate that neural networks can outperform conventional numerical nonlinear Fourier transform algorithms for processing the noise-corrupted optical signal. Applying the Bayesian hyper-parameters optimisation, we design the architecture of neural networks capable to compute nonlinear signal spectrum at low SNR more accurately than conventional algorithms.\",\"PeriodicalId\":117375,\"journal\":{\"name\":\"2021 European Conference on Optical Communication (ECOC)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Conference on Optical Communication (ECOC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ecoc52684.2021.9605844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Conference on Optical Communication (ECOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecoc52684.2021.9605844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了神经网络可以优于传统的数值非线性傅立叶变换算法来处理噪声损坏的光信号。应用贝叶斯超参数优化,我们设计的神经网络架构能够比传统算法更准确地计算低信噪比下的非线性信号频谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Networks For Nonlinear Fourier Spectrum Computation
We demonstrate that neural networks can outperform conventional numerical nonlinear Fourier transform algorithms for processing the noise-corrupted optical signal. Applying the Bayesian hyper-parameters optimisation, we design the architecture of neural networks capable to compute nonlinear signal spectrum at low SNR more accurately than conventional algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Light Scattering Mechanisms in Few-Mode Fibers Passive Aligned Glass Waveguide Connector for Co-Packaged Optics Robust Topology Optimization for Foundry-Photonics Inverse Design: Examining Compact and Arbitrary Power Splitters A 4×50 Gb/s All-Silicon Ring-based WDM Transceiver with CMOS IC 400 Gb/s CWDM-4 PAM-4 Uncooled (22°C to 70°C) Directly Modulation Transmission over 20 km
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1