E. Sedov, Pedro J. Freire, I. Chekhovskoy, S. Turitsyn, J. Prilepsky
{"title":"非线性傅立叶谱计算的神经网络","authors":"E. Sedov, Pedro J. Freire, I. Chekhovskoy, S. Turitsyn, J. Prilepsky","doi":"10.1109/ecoc52684.2021.9605844","DOIUrl":null,"url":null,"abstract":"We demonstrate that neural networks can outperform conventional numerical nonlinear Fourier transform algorithms for processing the noise-corrupted optical signal. Applying the Bayesian hyper-parameters optimisation, we design the architecture of neural networks capable to compute nonlinear signal spectrum at low SNR more accurately than conventional algorithms.","PeriodicalId":117375,"journal":{"name":"2021 European Conference on Optical Communication (ECOC)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Networks For Nonlinear Fourier Spectrum Computation\",\"authors\":\"E. Sedov, Pedro J. Freire, I. Chekhovskoy, S. Turitsyn, J. Prilepsky\",\"doi\":\"10.1109/ecoc52684.2021.9605844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate that neural networks can outperform conventional numerical nonlinear Fourier transform algorithms for processing the noise-corrupted optical signal. Applying the Bayesian hyper-parameters optimisation, we design the architecture of neural networks capable to compute nonlinear signal spectrum at low SNR more accurately than conventional algorithms.\",\"PeriodicalId\":117375,\"journal\":{\"name\":\"2021 European Conference on Optical Communication (ECOC)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Conference on Optical Communication (ECOC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ecoc52684.2021.9605844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Conference on Optical Communication (ECOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecoc52684.2021.9605844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural Networks For Nonlinear Fourier Spectrum Computation
We demonstrate that neural networks can outperform conventional numerical nonlinear Fourier transform algorithms for processing the noise-corrupted optical signal. Applying the Bayesian hyper-parameters optimisation, we design the architecture of neural networks capable to compute nonlinear signal spectrum at low SNR more accurately than conventional algorithms.