佩奇

Yilei Liang, Daniel O'keeffe, Nishanth R. Sastry
{"title":"佩奇","authors":"Yilei Liang, Daniel O'keeffe, Nishanth R. Sastry","doi":"10.1145/3378679.3394536","DOIUrl":null,"url":null,"abstract":"Intelligent Personal Assistants (IPAs) such as Apple's Siri, Google Now, and Amazon Alexa are becoming an increasingly important class of web application. In contrast to previous keyword-oriented search applications, IPAs support a rich query interface that allows user interaction through images, audio, and natural language queries. However, modern IPAs rely heavily on compute-intensive machine-learning inference. To achieve acceptable performance, ML-driven IPAs increasingly depend on specialized hardware accelerators (e.g. GPUs, FPGAs or TPUs), increasing costs for IPA service providers. For end-users, IPAs also present considerable privacy risks given the sensitive nature of the data they capture. We present PAIGE, a hybrid edge-cloud architecture for privacy-preserving Intelligent Personal Assistants. PAIGE's design is founded on the assumption that recent advances in low-cost hardware for machine-learning inference offer an opportunity to offload compute-intensive IPA ML tasks to the network edge. To allow privacy-preserving access to large IPA databases for less compute-intensive pre-processed queries, PAIGE leverages trusted execution environments at the server side. PAIGE's hybrid design allows privacy-preserving hardware acceleration of compute-intensive tasks, while avoiding the need to move potentially large IPA question-answering databases to the edge. As a step towards realising PAIGE, we present a first systematic performance evaluation of existing edge accelerator hardware platforms for a subset of IPA workloads, and show they offer a competitive alternative to existing data-center alternatives.","PeriodicalId":268360,"journal":{"name":"Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"PAIGE\",\"authors\":\"Yilei Liang, Daniel O'keeffe, Nishanth R. Sastry\",\"doi\":\"10.1145/3378679.3394536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent Personal Assistants (IPAs) such as Apple's Siri, Google Now, and Amazon Alexa are becoming an increasingly important class of web application. In contrast to previous keyword-oriented search applications, IPAs support a rich query interface that allows user interaction through images, audio, and natural language queries. However, modern IPAs rely heavily on compute-intensive machine-learning inference. To achieve acceptable performance, ML-driven IPAs increasingly depend on specialized hardware accelerators (e.g. GPUs, FPGAs or TPUs), increasing costs for IPA service providers. For end-users, IPAs also present considerable privacy risks given the sensitive nature of the data they capture. We present PAIGE, a hybrid edge-cloud architecture for privacy-preserving Intelligent Personal Assistants. PAIGE's design is founded on the assumption that recent advances in low-cost hardware for machine-learning inference offer an opportunity to offload compute-intensive IPA ML tasks to the network edge. To allow privacy-preserving access to large IPA databases for less compute-intensive pre-processed queries, PAIGE leverages trusted execution environments at the server side. PAIGE's hybrid design allows privacy-preserving hardware acceleration of compute-intensive tasks, while avoiding the need to move potentially large IPA question-answering databases to the edge. As a step towards realising PAIGE, we present a first systematic performance evaluation of existing edge accelerator hardware platforms for a subset of IPA workloads, and show they offer a competitive alternative to existing data-center alternatives.\",\"PeriodicalId\":268360,\"journal\":{\"name\":\"Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3378679.3394536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378679.3394536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PAIGE
Intelligent Personal Assistants (IPAs) such as Apple's Siri, Google Now, and Amazon Alexa are becoming an increasingly important class of web application. In contrast to previous keyword-oriented search applications, IPAs support a rich query interface that allows user interaction through images, audio, and natural language queries. However, modern IPAs rely heavily on compute-intensive machine-learning inference. To achieve acceptable performance, ML-driven IPAs increasingly depend on specialized hardware accelerators (e.g. GPUs, FPGAs or TPUs), increasing costs for IPA service providers. For end-users, IPAs also present considerable privacy risks given the sensitive nature of the data they capture. We present PAIGE, a hybrid edge-cloud architecture for privacy-preserving Intelligent Personal Assistants. PAIGE's design is founded on the assumption that recent advances in low-cost hardware for machine-learning inference offer an opportunity to offload compute-intensive IPA ML tasks to the network edge. To allow privacy-preserving access to large IPA databases for less compute-intensive pre-processed queries, PAIGE leverages trusted execution environments at the server side. PAIGE's hybrid design allows privacy-preserving hardware acceleration of compute-intensive tasks, while avoiding the need to move potentially large IPA question-answering databases to the edge. As a step towards realising PAIGE, we present a first systematic performance evaluation of existing edge accelerator hardware platforms for a subset of IPA workloads, and show they offer a competitive alternative to existing data-center alternatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aspect-oriented language for reactive distributed applications at the edge The serverkernel operating system Edge replication strategies for wide-area distributed processing On the impact of clustering for IoT analytics and message broker placement across cloud and edge CoLearn
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1