{"title":"基于双向内预测的压缩感知图像测量编码","authors":"Thuy Thi Thu Tran, Jirayu Peetakul, Chi Do-Kim Pham, Jinjia Zhou","doi":"10.1109/MMSP48831.2020.9287074","DOIUrl":null,"url":null,"abstract":"This work proposes a bi-directional intra prediction-based measurement coding algorithm for compressive sensing images. Compressive sensing is capable of reducing the size of the sparse signals, in which the high-dimensional signals are represented by the under-determined linear measurements. In order to explore the spatial redundancy in measurements, the corresponding pixel domain information extracted using the structure of measurement matrix. Firstly, the mono-directional prediction modes (i.e. horizontal mode and vertical mode), which refer to the nearest information of neighboring pixel blocks, are obtained by the structure of the measurement matrix. Secondly, we design bi-directional intra prediction modes (i.e. Diagonal + Horizontal, Diagonal + Vertical) base on the already obtained mono-directional prediction modes. Experimental results show that this work improves 0.01 - 0.02 dB PSNR improvement and the birate reductions of on average 19%, up to 36% compared to the state-of-the-art.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bi-directional intra prediction based measurement coding for compressive sensing images\",\"authors\":\"Thuy Thi Thu Tran, Jirayu Peetakul, Chi Do-Kim Pham, Jinjia Zhou\",\"doi\":\"10.1109/MMSP48831.2020.9287074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a bi-directional intra prediction-based measurement coding algorithm for compressive sensing images. Compressive sensing is capable of reducing the size of the sparse signals, in which the high-dimensional signals are represented by the under-determined linear measurements. In order to explore the spatial redundancy in measurements, the corresponding pixel domain information extracted using the structure of measurement matrix. Firstly, the mono-directional prediction modes (i.e. horizontal mode and vertical mode), which refer to the nearest information of neighboring pixel blocks, are obtained by the structure of the measurement matrix. Secondly, we design bi-directional intra prediction modes (i.e. Diagonal + Horizontal, Diagonal + Vertical) base on the already obtained mono-directional prediction modes. Experimental results show that this work improves 0.01 - 0.02 dB PSNR improvement and the birate reductions of on average 19%, up to 36% compared to the state-of-the-art.\",\"PeriodicalId\":188283,\"journal\":{\"name\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP48831.2020.9287074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bi-directional intra prediction based measurement coding for compressive sensing images
This work proposes a bi-directional intra prediction-based measurement coding algorithm for compressive sensing images. Compressive sensing is capable of reducing the size of the sparse signals, in which the high-dimensional signals are represented by the under-determined linear measurements. In order to explore the spatial redundancy in measurements, the corresponding pixel domain information extracted using the structure of measurement matrix. Firstly, the mono-directional prediction modes (i.e. horizontal mode and vertical mode), which refer to the nearest information of neighboring pixel blocks, are obtained by the structure of the measurement matrix. Secondly, we design bi-directional intra prediction modes (i.e. Diagonal + Horizontal, Diagonal + Vertical) base on the already obtained mono-directional prediction modes. Experimental results show that this work improves 0.01 - 0.02 dB PSNR improvement and the birate reductions of on average 19%, up to 36% compared to the state-of-the-art.