{"title":"通过高效的MPPT和PMU设计,最大限度地为微功率应用收集能量","authors":"Hui Shao, C. Tsui, W. Ki","doi":"10.1109/ASPDAC.2010.5419915","DOIUrl":null,"url":null,"abstract":"Energy harvesting is becoming more and more popular for micro-power applications where the environmental energy is used to power up the systems. In order to prolong the device lifetime and guarantee the system operation, the harvested power from the energy transducer to supply the system load should be maximized. This paper reviews different techniques and solutions to maximize the harvested power. Different environmental energy sources and the characteristics of the corresponding energy transducers are discussed. Algorithms to detect and track the maximum power point (MPP) of the energy transducer are summarized. Different power management unit (PMU) designs to execute MPP tracking (MPPT) algorithms are presented.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Maximizing the harvested energy for micro-power applications through efficient MPPT and PMU design\",\"authors\":\"Hui Shao, C. Tsui, W. Ki\",\"doi\":\"10.1109/ASPDAC.2010.5419915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy harvesting is becoming more and more popular for micro-power applications where the environmental energy is used to power up the systems. In order to prolong the device lifetime and guarantee the system operation, the harvested power from the energy transducer to supply the system load should be maximized. This paper reviews different techniques and solutions to maximize the harvested power. Different environmental energy sources and the characteristics of the corresponding energy transducers are discussed. Algorithms to detect and track the maximum power point (MPP) of the energy transducer are summarized. Different power management unit (PMU) designs to execute MPP tracking (MPPT) algorithms are presented.\",\"PeriodicalId\":152569,\"journal\":{\"name\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2010.5419915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximizing the harvested energy for micro-power applications through efficient MPPT and PMU design
Energy harvesting is becoming more and more popular for micro-power applications where the environmental energy is used to power up the systems. In order to prolong the device lifetime and guarantee the system operation, the harvested power from the energy transducer to supply the system load should be maximized. This paper reviews different techniques and solutions to maximize the harvested power. Different environmental energy sources and the characteristics of the corresponding energy transducers are discussed. Algorithms to detect and track the maximum power point (MPP) of the energy transducer are summarized. Different power management unit (PMU) designs to execute MPP tracking (MPPT) algorithms are presented.