一种用随机集表示语言量化的新方法及其在跟踪和数据融合中的应用

W. Torrez, D. Bamber, I. Goodman, H. Nguyen
{"title":"一种用随机集表示语言量化的新方法及其在跟踪和数据融合中的应用","authors":"W. Torrez, D. Bamber, I. Goodman, H. Nguyen","doi":"10.1109/ICIF.2002.1020964","DOIUrl":null,"url":null,"abstract":"There is an obvious need to be able to integrate both linguistic-based and stochastic-based input information in data fusion. In particular, this need is critical in addressing problems of track association, including cyber-state intrusions. This paper treats this issue through a new insight into how three apparently distinct mathematical tools can be combined: \"boolean relational event algebra\" (BREA), \"one point random set coverage representations of fuzzy sets\" (OPRSC), and \"complexity-reducing algorithm for near optimal fusion\" (CRANOF).","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A new method for representing linguistic quantifications by random sets with applications to tracking and data fusion\",\"authors\":\"W. Torrez, D. Bamber, I. Goodman, H. Nguyen\",\"doi\":\"10.1109/ICIF.2002.1020964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an obvious need to be able to integrate both linguistic-based and stochastic-based input information in data fusion. In particular, this need is critical in addressing problems of track association, including cyber-state intrusions. This paper treats this issue through a new insight into how three apparently distinct mathematical tools can be combined: \\\"boolean relational event algebra\\\" (BREA), \\\"one point random set coverage representations of fuzzy sets\\\" (OPRSC), and \\\"complexity-reducing algorithm for near optimal fusion\\\" (CRANOF).\",\"PeriodicalId\":399150,\"journal\":{\"name\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2002.1020964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1020964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

显然需要能够在数据融合中集成基于语言和基于随机的输入信息。特别是,这一需求对于解决包括网络国家入侵在内的轨道关联问题至关重要。本文通过对三种明显不同的数学工具如何组合的新见解来处理这个问题:“布尔关系事件代数”(BREA),“模糊集的一点随机集覆盖表示”(OPRSC)和“近最优融合的复杂性降低算法”(CRANOF)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new method for representing linguistic quantifications by random sets with applications to tracking and data fusion
There is an obvious need to be able to integrate both linguistic-based and stochastic-based input information in data fusion. In particular, this need is critical in addressing problems of track association, including cyber-state intrusions. This paper treats this issue through a new insight into how three apparently distinct mathematical tools can be combined: "boolean relational event algebra" (BREA), "one point random set coverage representations of fuzzy sets" (OPRSC), and "complexity-reducing algorithm for near optimal fusion" (CRANOF).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximating fuzzy measures by hierarchically decomposable ones Tracking and fusion for wireless sensor networks A dynamic communication model for loosely coupled hybrid tracking systems On platform-based sensor management An improved Bayes fusion algorithm with the Parzen window method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1