基于smote的过采样处理机器预测维护中的数据不平衡

S. Sridhar, Sowmya Sanagavarapu
{"title":"基于smote的过采样处理机器预测维护中的数据不平衡","authors":"S. Sridhar, Sowmya Sanagavarapu","doi":"10.1109/CICN51697.2021.9574668","DOIUrl":null,"url":null,"abstract":"The identification of failures and defects in industrial machines has proven to be a challenge to gauge their warranty and performance. Depreciation in industrial machines occurs due to several factors, most commonly- tool wear, strain, heat and power failure. In this paper, the development of machine learning algorithms for the prediction of machine failures is done. A synthesized dataset was used in the predictive maintenance model, that reflects real-time failures encountered in the industries. The class data imbalance hinders the performance of machine learning algorithms and this is handled by evaluating SMOTE-based oversampling techniques. By using SMOTE technique, a 7.83 % increase in the AUC score is observed, thereby improving the performance of the Random Forest classifier in distinguishing the instances of non-failure and machine failures.","PeriodicalId":224313,"journal":{"name":"2021 13th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Handling Data Imbalance in Predictive Maintenance for Machines using SMOTE-based Oversampling\",\"authors\":\"S. Sridhar, Sowmya Sanagavarapu\",\"doi\":\"10.1109/CICN51697.2021.9574668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of failures and defects in industrial machines has proven to be a challenge to gauge their warranty and performance. Depreciation in industrial machines occurs due to several factors, most commonly- tool wear, strain, heat and power failure. In this paper, the development of machine learning algorithms for the prediction of machine failures is done. A synthesized dataset was used in the predictive maintenance model, that reflects real-time failures encountered in the industries. The class data imbalance hinders the performance of machine learning algorithms and this is handled by evaluating SMOTE-based oversampling techniques. By using SMOTE technique, a 7.83 % increase in the AUC score is observed, thereby improving the performance of the Random Forest classifier in distinguishing the instances of non-failure and machine failures.\",\"PeriodicalId\":224313,\"journal\":{\"name\":\"2021 13th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN51697.2021.9574668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN51697.2021.9574668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

工业机器的故障和缺陷的识别已被证明是衡量其保修和性能的一个挑战。工业机器的折旧是由几个因素引起的,最常见的是刀具磨损、应变、热和电源故障。本文对机器故障预测的机器学习算法进行了研究。在预测维护模型中使用了一个综合数据集,该数据集反映了工业中遇到的实时故障。类数据不平衡阻碍了机器学习算法的性能,这是通过评估基于smote的过采样技术来处理的。通过使用SMOTE技术,观察到AUC得分提高了7.83%,从而提高了随机森林分类器在区分非故障和机器故障实例方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Handling Data Imbalance in Predictive Maintenance for Machines using SMOTE-based Oversampling
The identification of failures and defects in industrial machines has proven to be a challenge to gauge their warranty and performance. Depreciation in industrial machines occurs due to several factors, most commonly- tool wear, strain, heat and power failure. In this paper, the development of machine learning algorithms for the prediction of machine failures is done. A synthesized dataset was used in the predictive maintenance model, that reflects real-time failures encountered in the industries. The class data imbalance hinders the performance of machine learning algorithms and this is handled by evaluating SMOTE-based oversampling techniques. By using SMOTE technique, a 7.83 % increase in the AUC score is observed, thereby improving the performance of the Random Forest classifier in distinguishing the instances of non-failure and machine failures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Model based on Support Vector Machine and Principal Component Analysis Applied to Arterial Hypertension Detection Sentiment Analysis on Zomato Reviews A Review of Image-Based Deep Learning Algorithms for Cervical Cancer Screening Establish Program WCET and Energy Consumption Prediction Model Based on L-M Algorithm Chicken Swarm Optimization Algorithm Based on Adaptive Dynamic Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1