基于聚类的建筑数据异常点检测方法

U. Habib, G. Zucker, Max Blochle, Florian Judex, Jan Haase
{"title":"基于聚类的建筑数据异常点检测方法","authors":"U. Habib, G. Zucker, Max Blochle, Florian Judex, Jan Haase","doi":"10.1109/IECON.2015.7392181","DOIUrl":null,"url":null,"abstract":"To achieve energy efficiency in buildings, a lot of raw data is recorded, during the operation of buildings. This recorded raw data is further used for the analysis of the performance of buildings and its different components e.g. Heating, Ventilation and Air-Conditioning (HVAC). To save time and energy it is required to ensure resilience of the data by detecting and replacing outliers (i.e. data samples that are not plausible) in the data before detailed analysis. This paper discusses the steps involved for detecting outliers in the data obtained from absorption chiller using their On/Off state information. It also proposes a method for automatic detection of On/Off and/or Missing Data status of the chiller. The technique uses two layer K-Means clustering for detecting On/Off as well as Missing Data state of the chiller. After automatic detection of the chiller On/Off cycle, a method for outlier detection is proposed using Z-Score normalization based on the On/Off cycle state of chillers and clustering outliers by Expectation Maximization clustering algorithm. Moreover, the results of filling the missing values with regression and linear interpolation for short and long periods are elaborated. All proposed methods are applied to real building data and the results are discussed.","PeriodicalId":190550,"journal":{"name":"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Outliers detection method using clustering in buildings data\",\"authors\":\"U. Habib, G. Zucker, Max Blochle, Florian Judex, Jan Haase\",\"doi\":\"10.1109/IECON.2015.7392181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve energy efficiency in buildings, a lot of raw data is recorded, during the operation of buildings. This recorded raw data is further used for the analysis of the performance of buildings and its different components e.g. Heating, Ventilation and Air-Conditioning (HVAC). To save time and energy it is required to ensure resilience of the data by detecting and replacing outliers (i.e. data samples that are not plausible) in the data before detailed analysis. This paper discusses the steps involved for detecting outliers in the data obtained from absorption chiller using their On/Off state information. It also proposes a method for automatic detection of On/Off and/or Missing Data status of the chiller. The technique uses two layer K-Means clustering for detecting On/Off as well as Missing Data state of the chiller. After automatic detection of the chiller On/Off cycle, a method for outlier detection is proposed using Z-Score normalization based on the On/Off cycle state of chillers and clustering outliers by Expectation Maximization clustering algorithm. Moreover, the results of filling the missing values with regression and linear interpolation for short and long periods are elaborated. All proposed methods are applied to real building data and the results are discussed.\",\"PeriodicalId\":190550,\"journal\":{\"name\":\"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2015.7392181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2015.7392181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

为了实现建筑物的能源效率,在建筑物运行过程中记录了大量的原始数据。这些记录的原始数据将进一步用于分析建筑物及其不同组成部分的性能,例如供暖、通风和空调(HVAC)。为了节省时间和精力,需要在详细分析数据之前,通过检测和替换数据中的异常值(即不可信的数据样本)来确保数据的弹性。本文讨论了利用吸收式制冷机的开/关状态信息检测数据异常值所涉及的步骤。提出了一种自动检测冷水机开/关和/或丢失数据状态的方法。该技术使用两层K-Means聚类来检测冷水机的开/关状态和缺失数据状态。在冷水机组开/关循环自动检测后,提出了一种基于冷水机组开/关循环状态的Z-Score归一化异常点检测方法,并采用期望最大化聚类算法对异常点进行聚类。此外,还详细阐述了用回归和线性插值方法对短周期和长周期的缺失值进行填充的结果。将所提出的方法应用于实际建筑数据,并对结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Outliers detection method using clustering in buildings data
To achieve energy efficiency in buildings, a lot of raw data is recorded, during the operation of buildings. This recorded raw data is further used for the analysis of the performance of buildings and its different components e.g. Heating, Ventilation and Air-Conditioning (HVAC). To save time and energy it is required to ensure resilience of the data by detecting and replacing outliers (i.e. data samples that are not plausible) in the data before detailed analysis. This paper discusses the steps involved for detecting outliers in the data obtained from absorption chiller using their On/Off state information. It also proposes a method for automatic detection of On/Off and/or Missing Data status of the chiller. The technique uses two layer K-Means clustering for detecting On/Off as well as Missing Data state of the chiller. After automatic detection of the chiller On/Off cycle, a method for outlier detection is proposed using Z-Score normalization based on the On/Off cycle state of chillers and clustering outliers by Expectation Maximization clustering algorithm. Moreover, the results of filling the missing values with regression and linear interpolation for short and long periods are elaborated. All proposed methods are applied to real building data and the results are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new combined bidirectional boost converter and battery charger for electric vehicles Mixed strategist dynamics application to electrical vehicle distributed load scheduling DC fault isolation study of bidirectional dual active bridge DC/DC converter for DC transmission grid application A combined switched reluctance motor drive and battery charger for electric vehicles Experimental validation of a proposed single-phase five-level active rectifier operating with model predictive current control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1