基于非凸正则化的脉冲干扰消除

Lei Zhou, Hongqing Liu, Zhen Luo, T. Truong
{"title":"基于非凸正则化的脉冲干扰消除","authors":"Lei Zhou, Hongqing Liu, Zhen Luo, T. Truong","doi":"10.1109/ICDSP.2018.8631563","DOIUrl":null,"url":null,"abstract":"This work aims to recovery the signal that is corrupted by impulsive disturbance. To that end, the $\\ell_{p}$-norm $(0 \\lt p \\leq 1)$ is employed to promote sparsity of the signal of interest and the impulsive disturbance. By doing so, the signal recovery and disturbance suppression are simultaneously achieved. Two improved solvers based on block coordinate descent (BCD) and alternative direction method of multipliers (ADMM) frameworks are developed by utilizing the principle of the reweighted recursive least squares. Numerical experiments demonstrate that the superior performance of the proposed algorithms is obtained compared with the state-of-the-art proximal BCD and ADMM algorithms.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"340 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elimination of Impulsive Disturbance based on Nonconvex Regularization\",\"authors\":\"Lei Zhou, Hongqing Liu, Zhen Luo, T. Truong\",\"doi\":\"10.1109/ICDSP.2018.8631563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to recovery the signal that is corrupted by impulsive disturbance. To that end, the $\\\\ell_{p}$-norm $(0 \\\\lt p \\\\leq 1)$ is employed to promote sparsity of the signal of interest and the impulsive disturbance. By doing so, the signal recovery and disturbance suppression are simultaneously achieved. Two improved solvers based on block coordinate descent (BCD) and alternative direction method of multipliers (ADMM) frameworks are developed by utilizing the principle of the reweighted recursive least squares. Numerical experiments demonstrate that the superior performance of the proposed algorithms is obtained compared with the state-of-the-art proximal BCD and ADMM algorithms.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"340 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是恢复被脉冲干扰破坏的信号。为此,采用$\ell_{p}$ -范数$(0 \lt p \leq 1)$来提高感兴趣信号和脉冲干扰的稀疏性。通过这样做,可以同时实现信号恢复和干扰抑制。利用重加权递推最小二乘原理,提出了基于分块坐标下降法(BCD)和乘法器备选方向法(ADMM)框架的改进求解方法。数值实验表明,与目前最先进的近端BCD和ADMM算法相比,该算法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elimination of Impulsive Disturbance based on Nonconvex Regularization
This work aims to recovery the signal that is corrupted by impulsive disturbance. To that end, the $\ell_{p}$-norm $(0 \lt p \leq 1)$ is employed to promote sparsity of the signal of interest and the impulsive disturbance. By doing so, the signal recovery and disturbance suppression are simultaneously achieved. Two improved solvers based on block coordinate descent (BCD) and alternative direction method of multipliers (ADMM) frameworks are developed by utilizing the principle of the reweighted recursive least squares. Numerical experiments demonstrate that the superior performance of the proposed algorithms is obtained compared with the state-of-the-art proximal BCD and ADMM algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High-Throughput QC-LDPC Decoder for Near-Earth Application Face Recognition Based on Stacked Convolutional Autoencoder and Sparse Representation Internet of Remote Things: A Communication Scheme for Air-to-Ground Information Dissemination Deep Learning for Automatic IC Image Analysis A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1