NAND闪存的自适应持久性编码

A. Jagmohan, M. Franceschini, L. A. Lastras-Montaño, J. Karidis
{"title":"NAND闪存的自适应持久性编码","authors":"A. Jagmohan, M. Franceschini, L. A. Lastras-Montaño, J. Karidis","doi":"10.1109/GLOCOMW.2010.5700260","DOIUrl":null,"url":null,"abstract":"A fundamental constraint in the use of newer NAND Flash devices in the enterprise space is the low cycling endurance of such devices. As an example, the latest 2-bit MLC devices have a cycling endurance ranging from 3K to 10K program/erase cycles. Upcoming higher-density devices are expected to have even lower endurance. In this paper we propose a coding technique called Adaptive Endurance Coding (AEC) which increases the number of program/erase cycles that a Flash device can endure. The key insight leveraged by the proposed technique is the data-dependent nature of Flash cell-wear. Data-dependent wear implies that Flash chip/device lifetime can be significantly increased by converting data into bit-patterns, prior to programming, which cause minimal wear. AEC can be used to generate a capacity-wear trade-off; for compressible data, AEC can be adapted to data compressibility in order to maximize endurance gains with low system overhead costs. The technique can be implemented in the Flash device controller without requiring any hardware changes to the device itself. We present empirical results on SLC and MLC Flash chips demonstrating the improvements in retention and bit-error rate which can be obtained via this technique, and present device-level simulation results quantifying the gains achievable by the use of AEC.","PeriodicalId":232205,"journal":{"name":"2010 IEEE Globecom Workshops","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Adaptive endurance coding for NAND Flash\",\"authors\":\"A. Jagmohan, M. Franceschini, L. A. Lastras-Montaño, J. Karidis\",\"doi\":\"10.1109/GLOCOMW.2010.5700260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fundamental constraint in the use of newer NAND Flash devices in the enterprise space is the low cycling endurance of such devices. As an example, the latest 2-bit MLC devices have a cycling endurance ranging from 3K to 10K program/erase cycles. Upcoming higher-density devices are expected to have even lower endurance. In this paper we propose a coding technique called Adaptive Endurance Coding (AEC) which increases the number of program/erase cycles that a Flash device can endure. The key insight leveraged by the proposed technique is the data-dependent nature of Flash cell-wear. Data-dependent wear implies that Flash chip/device lifetime can be significantly increased by converting data into bit-patterns, prior to programming, which cause minimal wear. AEC can be used to generate a capacity-wear trade-off; for compressible data, AEC can be adapted to data compressibility in order to maximize endurance gains with low system overhead costs. The technique can be implemented in the Flash device controller without requiring any hardware changes to the device itself. We present empirical results on SLC and MLC Flash chips demonstrating the improvements in retention and bit-error rate which can be obtained via this technique, and present device-level simulation results quantifying the gains achievable by the use of AEC.\",\"PeriodicalId\":232205,\"journal\":{\"name\":\"2010 IEEE Globecom Workshops\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Globecom Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2010.5700260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Globecom Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2010.5700260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

在企业空间中使用较新的NAND闪存设备的一个基本限制是这种设备的低循环耐久性。例如,最新的2位MLC设备具有从3K到10K的程序/擦除周期的循环耐力。预计即将推出的高密度手机续航时间将更短。在本文中,我们提出了一种称为自适应持久编码(AEC)的编码技术,它增加了Flash设备可以承受的程序/擦除周期的数量。所提出的技术利用的关键洞察力是闪存电池磨损的数据依赖性质。数据相关的磨损意味着在编程之前,通过将数据转换为位模式可以显著增加闪存芯片/设备的使用寿命,这将导致最小的磨损。AEC可用于产生一种能力损耗权衡;对于可压缩数据,AEC可以适应数据可压缩性,以便在降低系统开销成本的情况下最大化持久性收益。该技术可以在Flash设备控制器中实现,而不需要对设备本身进行任何硬件更改。我们展示了SLC和MLC闪存芯片的经验结果,证明了通过该技术可以获得的保留率和误码率的改进,并展示了设备级仿真结果,量化了使用AEC可以实现的增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive endurance coding for NAND Flash
A fundamental constraint in the use of newer NAND Flash devices in the enterprise space is the low cycling endurance of such devices. As an example, the latest 2-bit MLC devices have a cycling endurance ranging from 3K to 10K program/erase cycles. Upcoming higher-density devices are expected to have even lower endurance. In this paper we propose a coding technique called Adaptive Endurance Coding (AEC) which increases the number of program/erase cycles that a Flash device can endure. The key insight leveraged by the proposed technique is the data-dependent nature of Flash cell-wear. Data-dependent wear implies that Flash chip/device lifetime can be significantly increased by converting data into bit-patterns, prior to programming, which cause minimal wear. AEC can be used to generate a capacity-wear trade-off; for compressible data, AEC can be adapted to data compressibility in order to maximize endurance gains with low system overhead costs. The technique can be implemented in the Flash device controller without requiring any hardware changes to the device itself. We present empirical results on SLC and MLC Flash chips demonstrating the improvements in retention and bit-error rate which can be obtained via this technique, and present device-level simulation results quantifying the gains achievable by the use of AEC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile radio channels' estimation for SC-FDMA systems by means of adequate noise and inter-carrier interference filtering in a transformed domain Performance enhancement in limited feedback precoded spatial multiplexing MIMO-OFDM systems by using multi-block channel prediction Techniques for embracing intra-cell unbalanced bit error characteristics in MLC NAND flash memory 4K digital cinema home theater over high throughput wireless transmission system Outage analysis for WCDMA femtocell with uplink attenuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1