基于硅片对片合成氧化锡纳米线的气体传感器

G. Mutinati, E. Brunet, T. Maier, S. Steinhauer, A. Kock
{"title":"基于硅片对片合成氧化锡纳米线的气体传感器","authors":"G. Mutinati, E. Brunet, T. Maier, S. Steinhauer, A. Kock","doi":"10.1109/ESSDERC.2011.6044170","DOIUrl":null,"url":null,"abstract":"We demonstrate a novel gas sensor device, which is based on silicon chip-to-chip synthesis of ultralong tin oxide (SnO2) nanowires. The sensor device employs an interconnected nanowire network configuration, which exhibits a huge surface-to-volume ratio and provides full access of the target gas to the nanowires. The chip-to-chip SnO2 nanowire device has an extraordinary sensitivity to the toxic gas H2S. A concentration of only 1.4 ppm decreases the resistance of the sensor by ∼ 85%, which demonstrates a detection limit far in the ppb range. The SnO2-nanowire fabrication procedure based on spray pyrolysis and subsequent annealing is performed at atmospheric pressure, requires no vacuum and allows upscale of the substrate to a wafer size. 3D-integration with CMOS chips is proposed as viable way for practical realization of smart nanowire based gas sensor devices for the consumer market.","PeriodicalId":161896,"journal":{"name":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas sensors based on silicon chip-to-chip synthesis of tin oxide nanowires\",\"authors\":\"G. Mutinati, E. Brunet, T. Maier, S. Steinhauer, A. Kock\",\"doi\":\"10.1109/ESSDERC.2011.6044170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a novel gas sensor device, which is based on silicon chip-to-chip synthesis of ultralong tin oxide (SnO2) nanowires. The sensor device employs an interconnected nanowire network configuration, which exhibits a huge surface-to-volume ratio and provides full access of the target gas to the nanowires. The chip-to-chip SnO2 nanowire device has an extraordinary sensitivity to the toxic gas H2S. A concentration of only 1.4 ppm decreases the resistance of the sensor by ∼ 85%, which demonstrates a detection limit far in the ppb range. The SnO2-nanowire fabrication procedure based on spray pyrolysis and subsequent annealing is performed at atmospheric pressure, requires no vacuum and allows upscale of the substrate to a wafer size. 3D-integration with CMOS chips is proposed as viable way for practical realization of smart nanowire based gas sensor devices for the consumer market.\",\"PeriodicalId\":161896,\"journal\":{\"name\":\"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2011.6044170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2011.6044170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了一种新型的气体传感器装置,该装置基于硅片对片合成的超长氧化锡(SnO2)纳米线。该传感器装置采用了相互连接的纳米线网络结构,具有巨大的表面体积比,并提供了目标气体与纳米线的完全接触。芯片对芯片的SnO2纳米线器件对有毒气体H2S具有非凡的敏感性。仅1.4 ppm的浓度将传感器的电阻降低约85%,这表明在ppb范围内的检测极限。基于喷雾热解和后续退火的sno2纳米线制造过程在常压下进行,不需要真空,并且可以将衬底升级到晶圆尺寸。提出了与CMOS芯片的3d集成是面向消费市场的智能纳米线气体传感器器件实际实现的可行途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gas sensors based on silicon chip-to-chip synthesis of tin oxide nanowires
We demonstrate a novel gas sensor device, which is based on silicon chip-to-chip synthesis of ultralong tin oxide (SnO2) nanowires. The sensor device employs an interconnected nanowire network configuration, which exhibits a huge surface-to-volume ratio and provides full access of the target gas to the nanowires. The chip-to-chip SnO2 nanowire device has an extraordinary sensitivity to the toxic gas H2S. A concentration of only 1.4 ppm decreases the resistance of the sensor by ∼ 85%, which demonstrates a detection limit far in the ppb range. The SnO2-nanowire fabrication procedure based on spray pyrolysis and subsequent annealing is performed at atmospheric pressure, requires no vacuum and allows upscale of the substrate to a wafer size. 3D-integration with CMOS chips is proposed as viable way for practical realization of smart nanowire based gas sensor devices for the consumer market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A low cost multi quantum SiGe/Si/Schottky structure for high performance IR detectors Accurate measurements of the charge pumping current due to individual MOS interface traps and interactions in the carrier capture/emission processes Extracting the conduction band offset in strained FinFETs from subthreshold-current measurements Variability analysis of scaled poly-Si channel FinFETs and tri-gate flash memories for high density and low cost stacked 3D-memory application EM-TCAD solving from 0–100 THz: A new implementation of an electromagnetic solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1