{"title":"非消失不确定性非线性严格反馈系统的性能保证规定时间控制","authors":"Yunfei Dai, Chao Wang, Yue Xie, X. Li, Yujuan Wang, Qing Chen","doi":"10.1109/ISAS59543.2023.10164625","DOIUrl":null,"url":null,"abstract":"This paper addresses the global finite-time tracking control problem for nonlinear strict-feedback systems with non-vanishing uncertainties and arbitrary initial conditions. The objective is to establish a control framework that guarantees system performance throughout the control process. To achieve finite-time convergence of tracking errors and guaranteed performance, a new performance function is proposed. To ensure global transient and steady-state performance, a time-varying scaling transformation method is employed. Under the proposed control method, the output tracking error is ensured to converge to a neighborhood of the origin of the preassigned size within a prescribed time at a pre-specified convergence rate. Additionally, global uniform ultimate boundedness is ensured for all signals in the closed-loop systems. Simulation examples validate the effectiveness and benefits of the proposed approach.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance guaranteed prescribed-time control of nonlinear strict-feedback systems with non-vanishing uncertainties\",\"authors\":\"Yunfei Dai, Chao Wang, Yue Xie, X. Li, Yujuan Wang, Qing Chen\",\"doi\":\"10.1109/ISAS59543.2023.10164625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the global finite-time tracking control problem for nonlinear strict-feedback systems with non-vanishing uncertainties and arbitrary initial conditions. The objective is to establish a control framework that guarantees system performance throughout the control process. To achieve finite-time convergence of tracking errors and guaranteed performance, a new performance function is proposed. To ensure global transient and steady-state performance, a time-varying scaling transformation method is employed. Under the proposed control method, the output tracking error is ensured to converge to a neighborhood of the origin of the preassigned size within a prescribed time at a pre-specified convergence rate. Additionally, global uniform ultimate boundedness is ensured for all signals in the closed-loop systems. Simulation examples validate the effectiveness and benefits of the proposed approach.\",\"PeriodicalId\":199115,\"journal\":{\"name\":\"2023 6th International Symposium on Autonomous Systems (ISAS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th International Symposium on Autonomous Systems (ISAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAS59543.2023.10164625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAS59543.2023.10164625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance guaranteed prescribed-time control of nonlinear strict-feedback systems with non-vanishing uncertainties
This paper addresses the global finite-time tracking control problem for nonlinear strict-feedback systems with non-vanishing uncertainties and arbitrary initial conditions. The objective is to establish a control framework that guarantees system performance throughout the control process. To achieve finite-time convergence of tracking errors and guaranteed performance, a new performance function is proposed. To ensure global transient and steady-state performance, a time-varying scaling transformation method is employed. Under the proposed control method, the output tracking error is ensured to converge to a neighborhood of the origin of the preassigned size within a prescribed time at a pre-specified convergence rate. Additionally, global uniform ultimate boundedness is ensured for all signals in the closed-loop systems. Simulation examples validate the effectiveness and benefits of the proposed approach.