基于贝叶斯网络的自主移动机器人统一融合系统

E. Besada-Portas, J. A. López-Orozco, Jesus M. de la Cruz
{"title":"基于贝叶斯网络的自主移动机器人统一融合系统","authors":"E. Besada-Portas, J. A. López-Orozco, Jesus M. de la Cruz","doi":"10.1109/ICIF.2002.1020900","DOIUrl":null,"url":null,"abstract":"A multisensor fusion system that is used for estimating the location of a robot and the state of the objects around it is presented. The whole fusion system has been implemented as a dynamic Bayesian network (DBN) with the purpose of having a homogenous and formalized way of capturing the dependencies that exist between robot location, the state of the environment, and all sensorial data. At this stage of research it consists of two independent DBNs, one for estimating robot location and another for building an occupancy probabilistic map of the environment, which are the basis of a unified fusion system. The dependencies of the variables and information in the two DBNs are captured by a unique DBN constructed by adding arcs (and nodes if necessary) between the two DBNs. The DBN implemented so far can be used in robots with different sets of sensors.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Unified fusion system based on Bayesian networks for autonomous mobile robots\",\"authors\":\"E. Besada-Portas, J. A. López-Orozco, Jesus M. de la Cruz\",\"doi\":\"10.1109/ICIF.2002.1020900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multisensor fusion system that is used for estimating the location of a robot and the state of the objects around it is presented. The whole fusion system has been implemented as a dynamic Bayesian network (DBN) with the purpose of having a homogenous and formalized way of capturing the dependencies that exist between robot location, the state of the environment, and all sensorial data. At this stage of research it consists of two independent DBNs, one for estimating robot location and another for building an occupancy probabilistic map of the environment, which are the basis of a unified fusion system. The dependencies of the variables and information in the two DBNs are captured by a unique DBN constructed by adding arcs (and nodes if necessary) between the two DBNs. The DBN implemented so far can be used in robots with different sets of sensors.\",\"PeriodicalId\":399150,\"journal\":{\"name\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"volume\":\"225 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2002.1020900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1020900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种用于估计机器人位置和周围物体状态的多传感器融合系统。整个融合系统被实现为一个动态贝叶斯网络(DBN),目的是用一种同构和形式化的方式来捕获机器人位置、环境状态和所有感官数据之间存在的依赖关系。在这个研究阶段,它由两个独立的dbn组成,一个用于估计机器人的位置,另一个用于构建环境的占用概率地图,这是统一融合系统的基础。两个DBN中变量和信息的依赖关系由一个唯一的DBN捕获,该DBN通过在两个DBN之间添加弧线(必要时还有节点)来构造。目前实现的DBN可以用于具有不同传感器集的机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unified fusion system based on Bayesian networks for autonomous mobile robots
A multisensor fusion system that is used for estimating the location of a robot and the state of the objects around it is presented. The whole fusion system has been implemented as a dynamic Bayesian network (DBN) with the purpose of having a homogenous and formalized way of capturing the dependencies that exist between robot location, the state of the environment, and all sensorial data. At this stage of research it consists of two independent DBNs, one for estimating robot location and another for building an occupancy probabilistic map of the environment, which are the basis of a unified fusion system. The dependencies of the variables and information in the two DBNs are captured by a unique DBN constructed by adding arcs (and nodes if necessary) between the two DBNs. The DBN implemented so far can be used in robots with different sets of sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximating fuzzy measures by hierarchically decomposable ones Tracking and fusion for wireless sensor networks A dynamic communication model for loosely coupled hybrid tracking systems On platform-based sensor management An improved Bayes fusion algorithm with the Parzen window method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1