{"title":"评估晶圆探测衬垫尺寸的测试结构","authors":"Brad Smith, D. Hall, Garrett Tranquillo","doi":"10.1109/ICMTS55420.2023.10094145","DOIUrl":null,"url":null,"abstract":"A new, cage-like structure is presented and is shown to be able to electrically identify a probe needle that has fallen slightly off its probe pad, even when the standard probe resistance structure (pads shorted together) reports “good” probe resistance. Using both structures together enables a more accurate evaluation of a probe system’s capabilities. Both test structures were used to compare three types of probe cards, reporting the smallest probe pad size that provides 100& probe yield.","PeriodicalId":275144,"journal":{"name":"2023 35th International Conference on Microelectronic Test Structure (ICMTS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Test Structure for Evaluation of Pad Size for Wafer Probing\",\"authors\":\"Brad Smith, D. Hall, Garrett Tranquillo\",\"doi\":\"10.1109/ICMTS55420.2023.10094145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new, cage-like structure is presented and is shown to be able to electrically identify a probe needle that has fallen slightly off its probe pad, even when the standard probe resistance structure (pads shorted together) reports “good” probe resistance. Using both structures together enables a more accurate evaluation of a probe system’s capabilities. Both test structures were used to compare three types of probe cards, reporting the smallest probe pad size that provides 100& probe yield.\",\"PeriodicalId\":275144,\"journal\":{\"name\":\"2023 35th International Conference on Microelectronic Test Structure (ICMTS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 35th International Conference on Microelectronic Test Structure (ICMTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMTS55420.2023.10094145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 35th International Conference on Microelectronic Test Structure (ICMTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTS55420.2023.10094145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Test Structure for Evaluation of Pad Size for Wafer Probing
A new, cage-like structure is presented and is shown to be able to electrically identify a probe needle that has fallen slightly off its probe pad, even when the standard probe resistance structure (pads shorted together) reports “good” probe resistance. Using both structures together enables a more accurate evaluation of a probe system’s capabilities. Both test structures were used to compare three types of probe cards, reporting the smallest probe pad size that provides 100& probe yield.