CT-DA:一种面向文化产业大数据的知识抽取方法

Shouzhi Sun, Jiali Wang, Zheng Gong, Aiping Tan, Yan Wang
{"title":"CT-DA:一种面向文化产业大数据的知识抽取方法","authors":"Shouzhi Sun, Jiali Wang, Zheng Gong, Aiping Tan, Yan Wang","doi":"10.1109/CoST57098.2022.00026","DOIUrl":null,"url":null,"abstract":"Knowledge extraction is the core work of constructing a knowledge graph, but most knowledge extraction methods assume perfect data support. Therefore, this paper analyzes the characteristics of big data in the cultural industry. In addition to the consensus characteristics of big data, these data also highlight the features of sectors such as low resources and intense data boundary fuzziness. Therefore, this paper proposes a knowledge extraction method for cultural industry data (CT-DA). Firstly, design a labeling strategy for big data in the cultural industry. Secondly, according to the low resource characteristics of data, create the counter transfer learning layer to realize resource transfer. Considering the intense fuzziness of data, design the dynamic attention mechanism layer for learning the critical attention of entities in the cultural field. Finally, build an experimental platform. The experiments show that this method has performance advantages in accuracy, recall, and F1.","PeriodicalId":135595,"journal":{"name":"2022 International Conference on Culture-Oriented Science and Technology (CoST)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CT-DA: A Knowledge Extraction Method for Cultural Industry Big Data\",\"authors\":\"Shouzhi Sun, Jiali Wang, Zheng Gong, Aiping Tan, Yan Wang\",\"doi\":\"10.1109/CoST57098.2022.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge extraction is the core work of constructing a knowledge graph, but most knowledge extraction methods assume perfect data support. Therefore, this paper analyzes the characteristics of big data in the cultural industry. In addition to the consensus characteristics of big data, these data also highlight the features of sectors such as low resources and intense data boundary fuzziness. Therefore, this paper proposes a knowledge extraction method for cultural industry data (CT-DA). Firstly, design a labeling strategy for big data in the cultural industry. Secondly, according to the low resource characteristics of data, create the counter transfer learning layer to realize resource transfer. Considering the intense fuzziness of data, design the dynamic attention mechanism layer for learning the critical attention of entities in the cultural field. Finally, build an experimental platform. The experiments show that this method has performance advantages in accuracy, recall, and F1.\",\"PeriodicalId\":135595,\"journal\":{\"name\":\"2022 International Conference on Culture-Oriented Science and Technology (CoST)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Culture-Oriented Science and Technology (CoST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoST57098.2022.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Culture-Oriented Science and Technology (CoST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoST57098.2022.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

知识抽取是构建知识图谱的核心工作,但大多数知识抽取方法都需要有完善的数据支持。因此,本文分析了大数据在文化产业中的特点。这些数据除了具有大数据的共识特征外,还突出了资源少、数据边界模糊度高等行业特征。为此,本文提出了一种文化产业数据的知识抽取方法(CT-DA)。首先,设计文化产业大数据的标签策略。其次,根据数据资源低的特点,创建counter迁移学习层,实现资源迁移。考虑到数据的强烈模糊性,设计动态注意机制层,学习文化领域实体的关键注意。最后搭建实验平台。实验表明,该方法在准确率、查全率和F1等方面具有性能优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CT-DA: A Knowledge Extraction Method for Cultural Industry Big Data
Knowledge extraction is the core work of constructing a knowledge graph, but most knowledge extraction methods assume perfect data support. Therefore, this paper analyzes the characteristics of big data in the cultural industry. In addition to the consensus characteristics of big data, these data also highlight the features of sectors such as low resources and intense data boundary fuzziness. Therefore, this paper proposes a knowledge extraction method for cultural industry data (CT-DA). Firstly, design a labeling strategy for big data in the cultural industry. Secondly, according to the low resource characteristics of data, create the counter transfer learning layer to realize resource transfer. Considering the intense fuzziness of data, design the dynamic attention mechanism layer for learning the critical attention of entities in the cultural field. Finally, build an experimental platform. The experiments show that this method has performance advantages in accuracy, recall, and F1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Vision Enhancement Network for Image Quality Assessment Analysis and Application of Tourists’ Sentiment Based on Hotel Comment Data Automatic Image Generation of Peking Opera Face using StyleGAN2 Analysis of Emotional Influencing Factors of Online Travel Reviews Based on BiLSTM-CNN Performance comparison of deep learning methods on hand bone segmentation and bone age assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1