{"title":"用于结构健康监测的自传感压电复合材料板导波的产生和传播","authors":"Junzhen Wang, Yanfeng Shen","doi":"10.1115/IMECE2018-86229","DOIUrl":null,"url":null,"abstract":"This paper presents a systematic numerical investigation of guided wave generation, propagation, interaction with damage, and reception in anisotropic piezoelectric composite plates. This approach employs piezoelectric composite materials as both load bearing and sensing elements. Finite element modal analysis of a plate unit cell with Bloch-Floquet boundary condition is performed to understand the guided wave propagation characteristics in piezoelectric composite plates. The guided wave generation and tuning characteristics are investigated using the harmonic analysis model with absorbing boundary conditions. The relationship between the generated wave modes and the laminate layup orientations is studied. Subsequently, an impact damage is introduced and modeled as a group of cone shape delaminated layers and stiffness losses within the layers through the thickness direction. 2D and 3D transient dynamic coupled-field finite element models are constructed to simulate the procedure of guided wave generation, propagation, interaction with the impact damage, and reception in an orthotropic piezoelectric composite plate using the commercial finite element software (ANSYS). In addition, Contact Acoustic Nonlinearity (CAN) is simulated via time domain transient analysis. Advanced signal processing techniques are used to extract the distinctive nonlinear features. The frequency-wavenumber analysis is further adopted to decipher wave modes and frequency components in the scattered wave field. This paper finishes with concluding remarks and suggestions for future work.","PeriodicalId":119220,"journal":{"name":"Volume 1: Advances in Aerospace Technology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Guided Wave Generation and Propagation in Self-Sensing Piezoelectric Composite Plates for Structural Health Monitoring\",\"authors\":\"Junzhen Wang, Yanfeng Shen\",\"doi\":\"10.1115/IMECE2018-86229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a systematic numerical investigation of guided wave generation, propagation, interaction with damage, and reception in anisotropic piezoelectric composite plates. This approach employs piezoelectric composite materials as both load bearing and sensing elements. Finite element modal analysis of a plate unit cell with Bloch-Floquet boundary condition is performed to understand the guided wave propagation characteristics in piezoelectric composite plates. The guided wave generation and tuning characteristics are investigated using the harmonic analysis model with absorbing boundary conditions. The relationship between the generated wave modes and the laminate layup orientations is studied. Subsequently, an impact damage is introduced and modeled as a group of cone shape delaminated layers and stiffness losses within the layers through the thickness direction. 2D and 3D transient dynamic coupled-field finite element models are constructed to simulate the procedure of guided wave generation, propagation, interaction with the impact damage, and reception in an orthotropic piezoelectric composite plate using the commercial finite element software (ANSYS). In addition, Contact Acoustic Nonlinearity (CAN) is simulated via time domain transient analysis. Advanced signal processing techniques are used to extract the distinctive nonlinear features. The frequency-wavenumber analysis is further adopted to decipher wave modes and frequency components in the scattered wave field. This paper finishes with concluding remarks and suggestions for future work.\",\"PeriodicalId\":119220,\"journal\":{\"name\":\"Volume 1: Advances in Aerospace Technology\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Advances in Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Guided Wave Generation and Propagation in Self-Sensing Piezoelectric Composite Plates for Structural Health Monitoring
This paper presents a systematic numerical investigation of guided wave generation, propagation, interaction with damage, and reception in anisotropic piezoelectric composite plates. This approach employs piezoelectric composite materials as both load bearing and sensing elements. Finite element modal analysis of a plate unit cell with Bloch-Floquet boundary condition is performed to understand the guided wave propagation characteristics in piezoelectric composite plates. The guided wave generation and tuning characteristics are investigated using the harmonic analysis model with absorbing boundary conditions. The relationship between the generated wave modes and the laminate layup orientations is studied. Subsequently, an impact damage is introduced and modeled as a group of cone shape delaminated layers and stiffness losses within the layers through the thickness direction. 2D and 3D transient dynamic coupled-field finite element models are constructed to simulate the procedure of guided wave generation, propagation, interaction with the impact damage, and reception in an orthotropic piezoelectric composite plate using the commercial finite element software (ANSYS). In addition, Contact Acoustic Nonlinearity (CAN) is simulated via time domain transient analysis. Advanced signal processing techniques are used to extract the distinctive nonlinear features. The frequency-wavenumber analysis is further adopted to decipher wave modes and frequency components in the scattered wave field. This paper finishes with concluding remarks and suggestions for future work.