奥氏体低密度钢的组织和变形行为:B2金属间相的决定性作用

B. Mishra, R. Sarkar, Vajinder Singh, A. Mukhopadhyay, Rohit T. Mathew, V. Madhu, M. Prasad
{"title":"奥氏体低密度钢的组织和变形行为:B2金属间相的决定性作用","authors":"B. Mishra, R. Sarkar, Vajinder Singh, A. Mukhopadhyay, Rohit T. Mathew, V. Madhu, M. Prasad","doi":"10.2139/ssrn.3831019","DOIUrl":null,"url":null,"abstract":"Abstract The feasibility of significant weight reduction in conjunction with the superior strength-ductility combination makes Fe-Mn-Al-C-based steels the candidate material for automotive and structural applications. The alloy chemistry and processing conditions influence the microstructure in low-density steels (LDS); however, their role in deformation behaviour is not fully understood. In the present study, three different austenitic LDS grades viz. Fe-28Mn-9Al-0.9C, Fe-28Mn-9Al-5Ni-0.9C and Fe-15Mn-9Al-5Ni-0.9C alloys in hot-rolled conditions were used for evaluating the role of secondary phases, especially B2 ordered Fe(Ni)Al phase on deformation characteristics. Ni-free LDS microstructure consisted of the γ-matrix with fine κ-carbides, whereas Ni containing low Mn alloy possessed coarser κ-carbides along with B2 in both bamboo-like stringer and polygonal particle morphology in the γ-matrix. The B2 containing alloy exhibited higher strength with reduced tensile ductility than the B2-free alloy. Hardness of the γ-matrix and B2 phase were similar with B2 grains exhibiting distinct pop-in events in the nanoindentation curves indicating incipient plasticity. The γ-matrix and B2 co-deform near yield, and a favourable orientation relationship (OR) between the γ-matrix and B2 facilitated easy slip transfer, while the non-favourable OR controlled ductility by strain accumulation and B2-cracking. The differences in the strain hardening behaviour of B2-free and B2 containing alloys were elucidated based on the changes in dislocation substructure evolution examined by an automated crystal orientation mapping in electron microscopy.","PeriodicalId":180833,"journal":{"name":"Mechanical Properties & Deformation of Materials eJournal","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Microstructure and Deformation Behaviour of Austenitic Low-Density Steels: The Defining Role of B2 Intermetallic Phase\",\"authors\":\"B. Mishra, R. Sarkar, Vajinder Singh, A. Mukhopadhyay, Rohit T. Mathew, V. Madhu, M. Prasad\",\"doi\":\"10.2139/ssrn.3831019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The feasibility of significant weight reduction in conjunction with the superior strength-ductility combination makes Fe-Mn-Al-C-based steels the candidate material for automotive and structural applications. The alloy chemistry and processing conditions influence the microstructure in low-density steels (LDS); however, their role in deformation behaviour is not fully understood. In the present study, three different austenitic LDS grades viz. Fe-28Mn-9Al-0.9C, Fe-28Mn-9Al-5Ni-0.9C and Fe-15Mn-9Al-5Ni-0.9C alloys in hot-rolled conditions were used for evaluating the role of secondary phases, especially B2 ordered Fe(Ni)Al phase on deformation characteristics. Ni-free LDS microstructure consisted of the γ-matrix with fine κ-carbides, whereas Ni containing low Mn alloy possessed coarser κ-carbides along with B2 in both bamboo-like stringer and polygonal particle morphology in the γ-matrix. The B2 containing alloy exhibited higher strength with reduced tensile ductility than the B2-free alloy. Hardness of the γ-matrix and B2 phase were similar with B2 grains exhibiting distinct pop-in events in the nanoindentation curves indicating incipient plasticity. The γ-matrix and B2 co-deform near yield, and a favourable orientation relationship (OR) between the γ-matrix and B2 facilitated easy slip transfer, while the non-favourable OR controlled ductility by strain accumulation and B2-cracking. The differences in the strain hardening behaviour of B2-free and B2 containing alloys were elucidated based on the changes in dislocation substructure evolution examined by an automated crystal orientation mapping in electron microscopy.\",\"PeriodicalId\":180833,\"journal\":{\"name\":\"Mechanical Properties & Deformation of Materials eJournal\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Properties & Deformation of Materials eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3831019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Properties & Deformation of Materials eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3831019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

fe - mn - al - c基钢显著减轻重量的可行性,加上其优越的强度-延展性组合,使其成为汽车和结构应用的候选材料。合金化学成分和加工条件对低密度钢组织的影响然而,它们在变形行为中的作用尚不完全清楚。本研究采用Fe- 28mn - 9al -0.9 c、Fe- 28mn - 9al - 5ni -0.9 c和Fe- 15mn - 9al - 5ni -0.9 c三种不同奥氏体LDS合金热轧条件下,评价了二次相,特别是B2有序Fe(Ni)Al相对变形特性的影响。无Ni合金的LDS组织由γ-基体中含有细小的κ-碳化物组成,而含Ni合金的低Mn合金在γ-基体中含有较粗的κ-碳化物和B2,呈竹状弦状,呈多边形颗粒形态。与不含B2的合金相比,含B2的合金具有更高的强度,但拉伸延展性降低。γ-基体和B2相的硬度与B2晶粒相似,在纳米压痕曲线上表现出明显的弹出事件,表明塑性初期。γ-基体与B2在屈服附近共变形,γ-基体与B2之间良好的取向关系(OR)有利于滑移传递,而不利的取向关系通过应变积累和B2开裂控制塑性。利用电子显微镜的自动晶体取向图分析了位错亚结构演变的变化,阐明了无B2合金和含B2合金应变硬化行为的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure and Deformation Behaviour of Austenitic Low-Density Steels: The Defining Role of B2 Intermetallic Phase
Abstract The feasibility of significant weight reduction in conjunction with the superior strength-ductility combination makes Fe-Mn-Al-C-based steels the candidate material for automotive and structural applications. The alloy chemistry and processing conditions influence the microstructure in low-density steels (LDS); however, their role in deformation behaviour is not fully understood. In the present study, three different austenitic LDS grades viz. Fe-28Mn-9Al-0.9C, Fe-28Mn-9Al-5Ni-0.9C and Fe-15Mn-9Al-5Ni-0.9C alloys in hot-rolled conditions were used for evaluating the role of secondary phases, especially B2 ordered Fe(Ni)Al phase on deformation characteristics. Ni-free LDS microstructure consisted of the γ-matrix with fine κ-carbides, whereas Ni containing low Mn alloy possessed coarser κ-carbides along with B2 in both bamboo-like stringer and polygonal particle morphology in the γ-matrix. The B2 containing alloy exhibited higher strength with reduced tensile ductility than the B2-free alloy. Hardness of the γ-matrix and B2 phase were similar with B2 grains exhibiting distinct pop-in events in the nanoindentation curves indicating incipient plasticity. The γ-matrix and B2 co-deform near yield, and a favourable orientation relationship (OR) between the γ-matrix and B2 facilitated easy slip transfer, while the non-favourable OR controlled ductility by strain accumulation and B2-cracking. The differences in the strain hardening behaviour of B2-free and B2 containing alloys were elucidated based on the changes in dislocation substructure evolution examined by an automated crystal orientation mapping in electron microscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genesis of Plasticity-Induced Serrated Metal Flow in Medium-Mn Steel Tuning Mechanical Properties of High Entropy Alloys by Electro-Pulsing Method Compression Fatigue Properties and Damage Mechanisms of a Bioinspired Nacre-Like Ceramic-Polymer Composite Grain Size Altering Yielding Mechanisms in Ultrafine Grained High-Mn Austenitic Steel: Advanced TEM Investigations Microstructure and Deformation Behaviour of Austenitic Low-Density Steels: The Defining Role of B2 Intermetallic Phase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1