Hongtao Lin, Lan Li, Yi Zou, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, Stephen T. Kozacik, Maciej Murakowski, D. Prather, Juejun Hu
{"title":"平面硫系玻璃中红外光子学","authors":"Hongtao Lin, Lan Li, Yi Zou, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, Stephen T. Kozacik, Maciej Murakowski, D. Prather, Juejun Hu","doi":"10.1117/12.2035688","DOIUrl":null,"url":null,"abstract":"Chalcogenide glasses, namely the amorphous compounds containing sulfur, selenium, and/or tellurium, have emerged as a promising material candidate for mid-infrared integrated photonics given their wide optical transparency window, high linear and nonlinear indices, as well as their capacity for monolithic integration on a wide array of substrates. Exploiting these unique features of the material, we demonstrated high-index-contrast, waveguide-coupled As2Se3 chalcogenide glass resonators monolithically integrated on silicon with a high intrinsic quality factor of 2 × 105 at 5.2 micron wavelength, and what we believe to be the first waveguide photonic crystal cavity operating in the mid-infrared.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Planar chalcogenide glass mid-infrared photonics\",\"authors\":\"Hongtao Lin, Lan Li, Yi Zou, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, Stephen T. Kozacik, Maciej Murakowski, D. Prather, Juejun Hu\",\"doi\":\"10.1117/12.2035688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chalcogenide glasses, namely the amorphous compounds containing sulfur, selenium, and/or tellurium, have emerged as a promising material candidate for mid-infrared integrated photonics given their wide optical transparency window, high linear and nonlinear indices, as well as their capacity for monolithic integration on a wide array of substrates. Exploiting these unique features of the material, we demonstrated high-index-contrast, waveguide-coupled As2Se3 chalcogenide glass resonators monolithically integrated on silicon with a high intrinsic quality factor of 2 × 105 at 5.2 micron wavelength, and what we believe to be the first waveguide photonic crystal cavity operating in the mid-infrared.\",\"PeriodicalId\":395835,\"journal\":{\"name\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2035688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2035688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chalcogenide glasses, namely the amorphous compounds containing sulfur, selenium, and/or tellurium, have emerged as a promising material candidate for mid-infrared integrated photonics given their wide optical transparency window, high linear and nonlinear indices, as well as their capacity for monolithic integration on a wide array of substrates. Exploiting these unique features of the material, we demonstrated high-index-contrast, waveguide-coupled As2Se3 chalcogenide glass resonators monolithically integrated on silicon with a high intrinsic quality factor of 2 × 105 at 5.2 micron wavelength, and what we believe to be the first waveguide photonic crystal cavity operating in the mid-infrared.