一种快速、自动、鲁棒的图像配准算法

Qi Zhang, Zhijiang Zhang, Dan Zeng
{"title":"一种快速、自动、鲁棒的图像配准算法","authors":"Qi Zhang, Zhijiang Zhang, Dan Zeng","doi":"10.1109/ICVRV.2011.53","DOIUrl":null,"url":null,"abstract":"In this paper, a fast automatic and robust image registration algorithm is presented. First, we use the Fourier transform to calculate the relative position between the input images and sort the unordered image sequence. For two images with overlap region, we detect the feature points in the part of the region in one of the image with the robust method of SIFT. According to the coordinates of the feature points and the position relationship of two images, we can compute the space of the feature points in another image and detect the feature points in this region. Then, we use the geometric relation to reduce some mismatch points with structurally similar and achieve the robust image registration. We demonstrate illustrative results obtained by comparing and contrasting our output with other methods. This method can detect the effective feature points quickly for reducing the detection range of the feature points without human intervention and reduce the running time greatly in ensuring the feature points matching accuracy.","PeriodicalId":239933,"journal":{"name":"2011 International Conference on Virtual Reality and Visualization","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Fast Automatic and Robust Image Registration Algorithm\",\"authors\":\"Qi Zhang, Zhijiang Zhang, Dan Zeng\",\"doi\":\"10.1109/ICVRV.2011.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a fast automatic and robust image registration algorithm is presented. First, we use the Fourier transform to calculate the relative position between the input images and sort the unordered image sequence. For two images with overlap region, we detect the feature points in the part of the region in one of the image with the robust method of SIFT. According to the coordinates of the feature points and the position relationship of two images, we can compute the space of the feature points in another image and detect the feature points in this region. Then, we use the geometric relation to reduce some mismatch points with structurally similar and achieve the robust image registration. We demonstrate illustrative results obtained by comparing and contrasting our output with other methods. This method can detect the effective feature points quickly for reducing the detection range of the feature points without human intervention and reduce the running time greatly in ensuring the feature points matching accuracy.\",\"PeriodicalId\":239933,\"journal\":{\"name\":\"2011 International Conference on Virtual Reality and Visualization\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Virtual Reality and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRV.2011.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Virtual Reality and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2011.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种快速、自动、鲁棒的图像配准算法。首先,利用傅里叶变换计算输入图像之间的相对位置,并对无序图像序列进行排序。对于具有重叠区域的两幅图像,采用SIFT鲁棒方法检测其中一幅图像中该区域部分的特征点。根据特征点的坐标和两幅图像的位置关系,我们可以计算另一幅图像中特征点的空间,并检测该区域内的特征点。然后,利用几何关系减少结构相似的不匹配点,实现图像的鲁棒配准。通过将我们的输出与其他方法进行比较和对比,我们给出了说明性的结果。该方法可以快速检测出有效的特征点,在不需要人工干预的情况下减少特征点的检测范围,在保证特征点匹配精度的同时大大减少了运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fast Automatic and Robust Image Registration Algorithm
In this paper, a fast automatic and robust image registration algorithm is presented. First, we use the Fourier transform to calculate the relative position between the input images and sort the unordered image sequence. For two images with overlap region, we detect the feature points in the part of the region in one of the image with the robust method of SIFT. According to the coordinates of the feature points and the position relationship of two images, we can compute the space of the feature points in another image and detect the feature points in this region. Then, we use the geometric relation to reduce some mismatch points with structurally similar and achieve the robust image registration. We demonstrate illustrative results obtained by comparing and contrasting our output with other methods. This method can detect the effective feature points quickly for reducing the detection range of the feature points without human intervention and reduce the running time greatly in ensuring the feature points matching accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Adaptive Method for Shader Simplification Multi-view Stereo Reconstruction for Internet Photos Using AR Technology for Automotive Visibility and Accessibility Assessment Building Virtual Entertainment Environment with Tiled Display Wall and Motion Tracking An Adaptive Sampling Based Parallel Volume Rendering Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1