二元模式分类系统的评价方法

Chih-Fong Tsai
{"title":"二元模式分类系统的评价方法","authors":"Chih-Fong Tsai","doi":"10.1109/IEEM.2010.5674217","DOIUrl":null,"url":null,"abstract":"Evaluation of pattern classification systems is the critical and important step in order to understand the system's performance over a chosen testing dataset. In general, considering cross validation can produce the ‘optimal’ or ‘objective’ classification result. As some ground-truth dataset(s) are usually used for simulating the system's classification performance, this may be somehow difficult to judge the system, which can provide similar performances for future unknown events. That is, when the system facing the real world cases are unlikely to provide as similar classification performances as the simulation results. This paper presents an ARS evaluation framework for binary pattern classification systems to solve the limitation of using the ground-truth dataset during system simulation. It is based on accuracy, reliability, and stability testing strategies. The experimental results based on the bankruptcy prediction case show that the proposed evaluation framework can solve the limitation of using some chosen testing set and allow us to understand more about the system's classification performances.","PeriodicalId":285694,"journal":{"name":"2010 IEEE International Conference on Industrial Engineering and Engineering Management","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An evaluation methodology for binary pattern classification systems\",\"authors\":\"Chih-Fong Tsai\",\"doi\":\"10.1109/IEEM.2010.5674217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluation of pattern classification systems is the critical and important step in order to understand the system's performance over a chosen testing dataset. In general, considering cross validation can produce the ‘optimal’ or ‘objective’ classification result. As some ground-truth dataset(s) are usually used for simulating the system's classification performance, this may be somehow difficult to judge the system, which can provide similar performances for future unknown events. That is, when the system facing the real world cases are unlikely to provide as similar classification performances as the simulation results. This paper presents an ARS evaluation framework for binary pattern classification systems to solve the limitation of using the ground-truth dataset during system simulation. It is based on accuracy, reliability, and stability testing strategies. The experimental results based on the bankruptcy prediction case show that the proposed evaluation framework can solve the limitation of using some chosen testing set and allow us to understand more about the system's classification performances.\",\"PeriodicalId\":285694,\"journal\":{\"name\":\"2010 IEEE International Conference on Industrial Engineering and Engineering Management\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Industrial Engineering and Engineering Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEM.2010.5674217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Industrial Engineering and Engineering Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM.2010.5674217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了了解系统在选定的测试数据集上的性能,模式分类系统的评估是至关重要的一步。一般来说,考虑交叉验证可以产生“最优”或“客观”的分类结果。由于通常使用一些真实的数据集来模拟系统的分类性能,这可能在某种程度上难以判断系统,这可以为未来的未知事件提供类似的性能。也就是说,当系统面对真实世界的情况时,不太可能提供与模拟结果相似的分类性能。本文提出了一种用于二元模式分类系统的ARS评估框架,解决了系统仿真时使用真实数据集的局限性。它基于准确性、可靠性和稳定性测试策略。基于破产预测案例的实验结果表明,所提出的评估框架可以解决使用特定测试集的限制,使我们能够更好地了解系统的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An evaluation methodology for binary pattern classification systems
Evaluation of pattern classification systems is the critical and important step in order to understand the system's performance over a chosen testing dataset. In general, considering cross validation can produce the ‘optimal’ or ‘objective’ classification result. As some ground-truth dataset(s) are usually used for simulating the system's classification performance, this may be somehow difficult to judge the system, which can provide similar performances for future unknown events. That is, when the system facing the real world cases are unlikely to provide as similar classification performances as the simulation results. This paper presents an ARS evaluation framework for binary pattern classification systems to solve the limitation of using the ground-truth dataset during system simulation. It is based on accuracy, reliability, and stability testing strategies. The experimental results based on the bankruptcy prediction case show that the proposed evaluation framework can solve the limitation of using some chosen testing set and allow us to understand more about the system's classification performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Standard Activity Measurement Plan Towards a knowledge-based taxonomy for value creation patterns in professional service firms: Cases of law firms in People's Republic of China Admission control of an M/M/1 queue with multiple deterioration states Compositive support system and evaluation system study on engineering equipment's use course management Evaluation of the solution for an optimal shelf allocation for SPA retailers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1