轻度过充循环下磷酸铁锂动力电池性能退化分析

Xiaogang Wu, Yu Chen, Xuhui Han, Jiuyu Du, Tao Wen, Yizhao Sun
{"title":"轻度过充循环下磷酸铁锂动力电池性能退化分析","authors":"Xiaogang Wu, Yu Chen, Xuhui Han, Jiuyu Du, Tao Wen, Yizhao Sun","doi":"10.1109/CVCI51460.2020.9338507","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries may be slightly overcharged due to the errors in the Battery Management System (BMS) state estimation when used in the field of vehicle power batteries, which may lead to problems such as battery performance degradation and battery stability degradation. Therefore, this paper conducts an experimental study on the influence of slightly overcharging cycles on battery performance degradation, and builds a semi-empirical capacity degradation model under slightly overcharging cycles on this basis. The experimental results show that the slightly overcharging cycle causes the capacity decay of the battery to be significantly accelerated, and its capacity decay will also cause the capacity “diving” phenomenon at the end of its life under normal cycle conditions. The slightly overcharging cycle has little effect on the internal polarization resistance of the battery. But it has a greater impact on the ohmic internal resistance due to the thickening of the SEI film.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of performance degradation of lithium iron phosphate power battery under slightly overcharging cycles\",\"authors\":\"Xiaogang Wu, Yu Chen, Xuhui Han, Jiuyu Du, Tao Wen, Yizhao Sun\",\"doi\":\"10.1109/CVCI51460.2020.9338507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-ion batteries may be slightly overcharged due to the errors in the Battery Management System (BMS) state estimation when used in the field of vehicle power batteries, which may lead to problems such as battery performance degradation and battery stability degradation. Therefore, this paper conducts an experimental study on the influence of slightly overcharging cycles on battery performance degradation, and builds a semi-empirical capacity degradation model under slightly overcharging cycles on this basis. The experimental results show that the slightly overcharging cycle causes the capacity decay of the battery to be significantly accelerated, and its capacity decay will also cause the capacity “diving” phenomenon at the end of its life under normal cycle conditions. The slightly overcharging cycle has little effect on the internal polarization resistance of the battery. But it has a greater impact on the ohmic internal resistance due to the thickening of the SEI film.\",\"PeriodicalId\":119721,\"journal\":{\"name\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVCI51460.2020.9338507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

锂离子电池在车用动力电池领域使用时,由于电池管理系统(Battery Management System, BMS)状态估计存在误差,可能会导致锂离子电池轻微过充,从而导致电池性能下降、电池稳定性下降等问题。因此,本文对微过充电周期对电池性能退化的影响进行了实验研究,并在此基础上建立了微过充电周期下的半经验容量退化模型。实验结果表明,轻微过充循环使电池容量衰减明显加速,在正常循环条件下,其容量衰减还会在其寿命结束时造成容量“跳水”现象。微过充循环对电池内部极化电阻影响不大。但由于SEI膜的增厚,对欧姆内阻的影响较大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of performance degradation of lithium iron phosphate power battery under slightly overcharging cycles
Lithium-ion batteries may be slightly overcharged due to the errors in the Battery Management System (BMS) state estimation when used in the field of vehicle power batteries, which may lead to problems such as battery performance degradation and battery stability degradation. Therefore, this paper conducts an experimental study on the influence of slightly overcharging cycles on battery performance degradation, and builds a semi-empirical capacity degradation model under slightly overcharging cycles on this basis. The experimental results show that the slightly overcharging cycle causes the capacity decay of the battery to be significantly accelerated, and its capacity decay will also cause the capacity “diving” phenomenon at the end of its life under normal cycle conditions. The slightly overcharging cycle has little effect on the internal polarization resistance of the battery. But it has a greater impact on the ohmic internal resistance due to the thickening of the SEI film.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Sensor Fusion of Camera, GNSS and IMU for Autonomous Driving Navigation Collision-avoidance steering control for autonomous vehicles using fast non-singular terminal sliding mode Energy management strategy based on velocity prediction for parallel plug-in hybrid electric bus Constrained Containment Control of Agents Network with Switching Topologies Multi-parameter driver intention recognition based on neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1