{"title":"使用反向尺寸和W/L交换的Atto焦耳CMOS门","authors":"A. Beg, Valeriu Beiu, W. Ibrahim","doi":"10.1109/NEWCAS.2011.5981328","DOIUrl":null,"url":null,"abstract":"Voltage reduction is a very widely used low-power technique (as reducing dynamic power quadratically, and leakage power linearly) which does sacrifice performance. An alternate technique, which is much less explored/investigated, is to rely on currents instead. The paper presents a thorough but still preliminary comparison of a recently introduced CMOS design technique which limits/reduces currents, with both the conventional/classical CMOS design, and also with a fresh sub-threshold CMOS design specifically aimed for ultra-low power (ULP). The preliminary results reported here suggest that the new design could achieve: (i) significantly lower power than classical CMOS (20–60×) without drastically degrading performances (5–20×); (ii) much better performances (100–200×) than the ULP scheme considered at power levels which are manageable (10–40x); while (iv) surpassing both of them on power-delay-product (PDP) and energy-delay-product (EDP). In particular, our inverters in 16nm are able to break the atto-Joule barrier at 300mV, and exhibit a delay of about 9ns.","PeriodicalId":271676,"journal":{"name":"2011 IEEE 9th International New Circuits and systems conference","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Atto Joule CMOS gates using reversed sizing and W/L swapping\",\"authors\":\"A. Beg, Valeriu Beiu, W. Ibrahim\",\"doi\":\"10.1109/NEWCAS.2011.5981328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voltage reduction is a very widely used low-power technique (as reducing dynamic power quadratically, and leakage power linearly) which does sacrifice performance. An alternate technique, which is much less explored/investigated, is to rely on currents instead. The paper presents a thorough but still preliminary comparison of a recently introduced CMOS design technique which limits/reduces currents, with both the conventional/classical CMOS design, and also with a fresh sub-threshold CMOS design specifically aimed for ultra-low power (ULP). The preliminary results reported here suggest that the new design could achieve: (i) significantly lower power than classical CMOS (20–60×) without drastically degrading performances (5–20×); (ii) much better performances (100–200×) than the ULP scheme considered at power levels which are manageable (10–40x); while (iv) surpassing both of them on power-delay-product (PDP) and energy-delay-product (EDP). In particular, our inverters in 16nm are able to break the atto-Joule barrier at 300mV, and exhibit a delay of about 9ns.\",\"PeriodicalId\":271676,\"journal\":{\"name\":\"2011 IEEE 9th International New Circuits and systems conference\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 9th International New Circuits and systems conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2011.5981328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 9th International New Circuits and systems conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2011.5981328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Atto Joule CMOS gates using reversed sizing and W/L swapping
Voltage reduction is a very widely used low-power technique (as reducing dynamic power quadratically, and leakage power linearly) which does sacrifice performance. An alternate technique, which is much less explored/investigated, is to rely on currents instead. The paper presents a thorough but still preliminary comparison of a recently introduced CMOS design technique which limits/reduces currents, with both the conventional/classical CMOS design, and also with a fresh sub-threshold CMOS design specifically aimed for ultra-low power (ULP). The preliminary results reported here suggest that the new design could achieve: (i) significantly lower power than classical CMOS (20–60×) without drastically degrading performances (5–20×); (ii) much better performances (100–200×) than the ULP scheme considered at power levels which are manageable (10–40x); while (iv) surpassing both of them on power-delay-product (PDP) and energy-delay-product (EDP). In particular, our inverters in 16nm are able to break the atto-Joule barrier at 300mV, and exhibit a delay of about 9ns.