使用反向尺寸和W/L交换的Atto焦耳CMOS门

A. Beg, Valeriu Beiu, W. Ibrahim
{"title":"使用反向尺寸和W/L交换的Atto焦耳CMOS门","authors":"A. Beg, Valeriu Beiu, W. Ibrahim","doi":"10.1109/NEWCAS.2011.5981328","DOIUrl":null,"url":null,"abstract":"Voltage reduction is a very widely used low-power technique (as reducing dynamic power quadratically, and leakage power linearly) which does sacrifice performance. An alternate technique, which is much less explored/investigated, is to rely on currents instead. The paper presents a thorough but still preliminary comparison of a recently introduced CMOS design technique which limits/reduces currents, with both the conventional/classical CMOS design, and also with a fresh sub-threshold CMOS design specifically aimed for ultra-low power (ULP). The preliminary results reported here suggest that the new design could achieve: (i) significantly lower power than classical CMOS (20–60×) without drastically degrading performances (5–20×); (ii) much better performances (100–200×) than the ULP scheme considered at power levels which are manageable (10–40x); while (iv) surpassing both of them on power-delay-product (PDP) and energy-delay-product (EDP). In particular, our inverters in 16nm are able to break the atto-Joule barrier at 300mV, and exhibit a delay of about 9ns.","PeriodicalId":271676,"journal":{"name":"2011 IEEE 9th International New Circuits and systems conference","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Atto Joule CMOS gates using reversed sizing and W/L swapping\",\"authors\":\"A. Beg, Valeriu Beiu, W. Ibrahim\",\"doi\":\"10.1109/NEWCAS.2011.5981328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voltage reduction is a very widely used low-power technique (as reducing dynamic power quadratically, and leakage power linearly) which does sacrifice performance. An alternate technique, which is much less explored/investigated, is to rely on currents instead. The paper presents a thorough but still preliminary comparison of a recently introduced CMOS design technique which limits/reduces currents, with both the conventional/classical CMOS design, and also with a fresh sub-threshold CMOS design specifically aimed for ultra-low power (ULP). The preliminary results reported here suggest that the new design could achieve: (i) significantly lower power than classical CMOS (20–60×) without drastically degrading performances (5–20×); (ii) much better performances (100–200×) than the ULP scheme considered at power levels which are manageable (10–40x); while (iv) surpassing both of them on power-delay-product (PDP) and energy-delay-product (EDP). In particular, our inverters in 16nm are able to break the atto-Joule barrier at 300mV, and exhibit a delay of about 9ns.\",\"PeriodicalId\":271676,\"journal\":{\"name\":\"2011 IEEE 9th International New Circuits and systems conference\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 9th International New Circuits and systems conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2011.5981328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 9th International New Circuits and systems conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2011.5981328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

电压降低是一种非常广泛使用的低功耗技术(如动态功率的二次降低和泄漏功率的线性降低),它会牺牲性能。另一种较少探索/研究的技术是依靠电流。本文对最近推出的限制/减小电流的CMOS设计技术与传统/经典CMOS设计以及专门针对超低功耗(ULP)的新亚阈值CMOS设计进行了全面但仍初步的比较。本文报告的初步结果表明,新设计可以实现:(i)显著低于经典CMOS (20-60×)的功耗,而不会大幅降低性能(5-20×);(ii)在可管理的功率水平(10 - 40倍)下,比ULP方案的性能(100 - 200倍)好得多;而(iv)在功率延迟积(PDP)和能量延迟积(EDP)上超过两者。特别是,我们的16nm逆变器能够在300mV时突破阿焦耳势垒,并表现出约9ns的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atto Joule CMOS gates using reversed sizing and W/L swapping
Voltage reduction is a very widely used low-power technique (as reducing dynamic power quadratically, and leakage power linearly) which does sacrifice performance. An alternate technique, which is much less explored/investigated, is to rely on currents instead. The paper presents a thorough but still preliminary comparison of a recently introduced CMOS design technique which limits/reduces currents, with both the conventional/classical CMOS design, and also with a fresh sub-threshold CMOS design specifically aimed for ultra-low power (ULP). The preliminary results reported here suggest that the new design could achieve: (i) significantly lower power than classical CMOS (20–60×) without drastically degrading performances (5–20×); (ii) much better performances (100–200×) than the ULP scheme considered at power levels which are manageable (10–40x); while (iv) surpassing both of them on power-delay-product (PDP) and energy-delay-product (EDP). In particular, our inverters in 16nm are able to break the atto-Joule barrier at 300mV, and exhibit a delay of about 9ns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-power high-speed capacitive transdermal Spatial Pulse Position Modulation communication A high-speed, low input current CMOS integrated front end for multi-spectral photodiode arrays A level shifter circuit design by using input/output voltage monitoring technique for ultra-low voltage digital CMOS LSIs A current-mode back-end for a sensor microsystem A two-dimensional logarithmic number system (2DLNS)-based Finite Impulse Response (FIR) filter design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1