传统与增材制造气膜冷却孔的流动校核及绝热效能测量

S. Cubeda, L. Andrei, L. Innocenti, F. Paone, Lorenzo Cocchi, A. Picchi, B. Facchini
{"title":"传统与增材制造气膜冷却孔的流动校核及绝热效能测量","authors":"S. Cubeda, L. Andrei, L. Innocenti, F. Paone, Lorenzo Cocchi, A. Picchi, B. Facchini","doi":"10.1115/gt2021-59638","DOIUrl":null,"url":null,"abstract":"\n In the recent years Additive Manufacturing (AM) methods, such as the Direct Metal Laser Melting (DMLM) technology, are getting more and more attractive and feasible for the realization of components and subcomponents of gas turbines. In particular, they are receiving much attention since, on one hand, the manufacturing of complex 3D geometries is allowed and, on the other, manufacturing and delivery times can be cut down. At the current state of the art, although AM is entering and spreading within modern gas turbines at fast pace, to the authors’ knowledge only few applications have yet been commercialized relatively to cooling holes, due to the intrinsic difficulties associated with such a critical feature.\n Lately, Baker Hughes is studying the possibility to manufacture film-cooling holes via the DMLM technology in order to exploit the flexibility of such innovative manufacturing method and hence eliminate additional processes and lead time. From the open literature it is known that additively manufactured holes can have a more irregular shape and higher roughness than traditional ones, which may lead not only to a reduction in coolant flow but more importantly to a decay of the film-cooling adiabatic effectiveness. For this reason, a test campaign has been conducted in collaboration with the University of Florence (Italy) with the objective of characterizing the performance (minimum passage diameter, flow check and adiabatic effectiveness) of AM vs traditional cylindrical holes on simple-geometry coupons built upon different construction angles.\n Results were then analyzed in order to fully compare the performance of AM vs traditional film-cooling holes at different operating regimes. In addition, selected holes were inspected through tomography in order to reveal the microscopic characteristics of lateral and outlet surfaces and get a further appreciation of the two different technologies. Ultimately the dependency of AM holes performance on print angles is sought with the purpose of characterizing the impact of such manufacturing technology on film-cooling holes design.","PeriodicalId":204099,"journal":{"name":"Volume 5A: Heat Transfer — Combustors; Film Cooling","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow Check and Adiabatic Effectiveness Measurements on Traditionally Versus Additively Manufactured Film-Cooling Holes\",\"authors\":\"S. Cubeda, L. Andrei, L. Innocenti, F. Paone, Lorenzo Cocchi, A. Picchi, B. Facchini\",\"doi\":\"10.1115/gt2021-59638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the recent years Additive Manufacturing (AM) methods, such as the Direct Metal Laser Melting (DMLM) technology, are getting more and more attractive and feasible for the realization of components and subcomponents of gas turbines. In particular, they are receiving much attention since, on one hand, the manufacturing of complex 3D geometries is allowed and, on the other, manufacturing and delivery times can be cut down. At the current state of the art, although AM is entering and spreading within modern gas turbines at fast pace, to the authors’ knowledge only few applications have yet been commercialized relatively to cooling holes, due to the intrinsic difficulties associated with such a critical feature.\\n Lately, Baker Hughes is studying the possibility to manufacture film-cooling holes via the DMLM technology in order to exploit the flexibility of such innovative manufacturing method and hence eliminate additional processes and lead time. From the open literature it is known that additively manufactured holes can have a more irregular shape and higher roughness than traditional ones, which may lead not only to a reduction in coolant flow but more importantly to a decay of the film-cooling adiabatic effectiveness. For this reason, a test campaign has been conducted in collaboration with the University of Florence (Italy) with the objective of characterizing the performance (minimum passage diameter, flow check and adiabatic effectiveness) of AM vs traditional cylindrical holes on simple-geometry coupons built upon different construction angles.\\n Results were then analyzed in order to fully compare the performance of AM vs traditional film-cooling holes at different operating regimes. In addition, selected holes were inspected through tomography in order to reveal the microscopic characteristics of lateral and outlet surfaces and get a further appreciation of the two different technologies. Ultimately the dependency of AM holes performance on print angles is sought with the purpose of characterizing the impact of such manufacturing technology on film-cooling holes design.\",\"PeriodicalId\":204099,\"journal\":{\"name\":\"Volume 5A: Heat Transfer — Combustors; Film Cooling\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5A: Heat Transfer — Combustors; Film Cooling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-59638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: Heat Transfer — Combustors; Film Cooling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-59638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,直接金属激光熔化(DMLM)技术等增材制造(AM)方法在燃气轮机部件和子部件的实现中越来越具有吸引力和可行性。特别是,它们正受到越来越多的关注,因为一方面可以制造复杂的3D几何形状,另一方面可以缩短制造和交货时间。在目前的艺术状态下,尽管AM正在快速进入并在现代燃气轮机中传播,但据作者所知,由于与这种关键特征相关的内在困难,相对于冷却孔,只有少数应用尚未商业化。最近,贝克休斯正在研究通过DMLM技术制造气膜冷却孔的可能性,以利用这种创新制造方法的灵活性,从而减少额外的工序和交货时间。从公开的文献中可以得知,增材制造的孔比传统的孔具有更不规则的形状和更高的粗糙度,这不仅可能导致冷却剂流量的减少,更重要的是导致膜冷却绝热效率的衰减。因此,与意大利佛罗伦萨大学合作开展了一项测试活动,目的是在不同构造角度的简单几何板上,表征增材制造与传统圆柱孔的性能(最小通径、流动检查和绝热有效性)。然后对结果进行分析,以便充分比较AM与传统气膜冷却孔在不同操作制度下的性能。此外,通过层析成像检查选定的孔,以揭示侧向和出口表面的微观特征,并进一步了解两种不同的技术。最终寻求增材制造孔性能对打印角度的依赖关系,目的是表征这种制造技术对膜冷却孔设计的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flow Check and Adiabatic Effectiveness Measurements on Traditionally Versus Additively Manufactured Film-Cooling Holes
In the recent years Additive Manufacturing (AM) methods, such as the Direct Metal Laser Melting (DMLM) technology, are getting more and more attractive and feasible for the realization of components and subcomponents of gas turbines. In particular, they are receiving much attention since, on one hand, the manufacturing of complex 3D geometries is allowed and, on the other, manufacturing and delivery times can be cut down. At the current state of the art, although AM is entering and spreading within modern gas turbines at fast pace, to the authors’ knowledge only few applications have yet been commercialized relatively to cooling holes, due to the intrinsic difficulties associated with such a critical feature. Lately, Baker Hughes is studying the possibility to manufacture film-cooling holes via the DMLM technology in order to exploit the flexibility of such innovative manufacturing method and hence eliminate additional processes and lead time. From the open literature it is known that additively manufactured holes can have a more irregular shape and higher roughness than traditional ones, which may lead not only to a reduction in coolant flow but more importantly to a decay of the film-cooling adiabatic effectiveness. For this reason, a test campaign has been conducted in collaboration with the University of Florence (Italy) with the objective of characterizing the performance (minimum passage diameter, flow check and adiabatic effectiveness) of AM vs traditional cylindrical holes on simple-geometry coupons built upon different construction angles. Results were then analyzed in order to fully compare the performance of AM vs traditional film-cooling holes at different operating regimes. In addition, selected holes were inspected through tomography in order to reveal the microscopic characteristics of lateral and outlet surfaces and get a further appreciation of the two different technologies. Ultimately the dependency of AM holes performance on print angles is sought with the purpose of characterizing the impact of such manufacturing technology on film-cooling holes design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Influence of Purge Flow Parameters on Heat Transfer and Film Cooling in Turbine Center Frames Uncertainty Analysis of Film Cooling of Fan-Shaped Holes on a Stator Vane Under Realistic Inlet Conditions Implementation of Vortex Generator and Ramp to Improve Film Cooling Effectiveness on Blade Endwall Coupling of Mainstream Velocity Fluctuations With Plenum Fed Film Cooling Jets An Experimental Study of Turbine Vane Film Cooling Using Endoscope-Based PSP Technique in a Single-Passage Wind Tunnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1