基于字典学习的三种聚类优化算法

Qing Miao, B. Ling
{"title":"基于字典学习的三种聚类优化算法","authors":"Qing Miao, B. Ling","doi":"10.1109/ICDSP.2018.8631597","DOIUrl":null,"url":null,"abstract":"This paper proposes $l_{2}$ norm, $l_{1}$ norm and $\\iota _{\\infty }$ norm of clustering optimization algorithms based on dictionary learning. By solving an optimization problem to assign each feature to a cluster and solving another optimization problem to re-calculating the vectors representing the clusters, each algorithm keeps iterating until it converges. Computer simulation experiments show that the three algorithms have good clustering results and the convergence is confirmed. The runtime of l2 norm clustering optimization algorithm is much faster than h norm and $ l\\infty $ norm clustering optimization algorithms.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three clustering optimization algorithms based on dictionary learning\",\"authors\":\"Qing Miao, B. Ling\",\"doi\":\"10.1109/ICDSP.2018.8631597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes $l_{2}$ norm, $l_{1}$ norm and $\\\\iota _{\\\\infty }$ norm of clustering optimization algorithms based on dictionary learning. By solving an optimization problem to assign each feature to a cluster and solving another optimization problem to re-calculating the vectors representing the clusters, each algorithm keeps iterating until it converges. Computer simulation experiments show that the three algorithms have good clustering results and the convergence is confirmed. The runtime of l2 norm clustering optimization algorithm is much faster than h norm and $ l\\\\infty $ norm clustering optimization algorithms.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了基于字典学习的聚类优化算法$l_{2}$范数、$l_{1}$范数和$\iota _{\infty }$范数。通过求解一个优化问题将每个特征分配给一个聚类,并求解另一个优化问题重新计算表示聚类的向量,每个算法不断迭代直到收敛。计算机仿真实验表明,三种算法聚类效果良好,收敛性得到了证实。l2范数聚类优化算法的运行速度比h范数和$ l\infty $范数聚类优化算法快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three clustering optimization algorithms based on dictionary learning
This paper proposes $l_{2}$ norm, $l_{1}$ norm and $\iota _{\infty }$ norm of clustering optimization algorithms based on dictionary learning. By solving an optimization problem to assign each feature to a cluster and solving another optimization problem to re-calculating the vectors representing the clusters, each algorithm keeps iterating until it converges. Computer simulation experiments show that the three algorithms have good clustering results and the convergence is confirmed. The runtime of l2 norm clustering optimization algorithm is much faster than h norm and $ l\infty $ norm clustering optimization algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High-Throughput QC-LDPC Decoder for Near-Earth Application Face Recognition Based on Stacked Convolutional Autoencoder and Sparse Representation Internet of Remote Things: A Communication Scheme for Air-to-Ground Information Dissemination Deep Learning for Automatic IC Image Analysis A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1