A. Matamura, N. Nishimura, Preston Birdsong, A. Bandyopadhyay, Adam Spirer, M. Markova, Shaolong Liu
{"title":"31.1基于ΔΣ的82mW无滤波器d类耳机放大器,THD+N - 93db,信噪比113dB,效率93%","authors":"A. Matamura, N. Nishimura, Preston Birdsong, A. Bandyopadhyay, Adam Spirer, M. Markova, Shaolong Liu","doi":"10.1109/ISSCC42613.2021.9365773","DOIUrl":null,"url":null,"abstract":"True Wireless Stereo/True Wireless Active-Noise-Canceling (ANC) headphones require low-latency digital-input headphone drivers that consume the lowest possible power to maximize battery life while providing high-fidelity audio playback. Typical headphone drivers use Class-A/AB topologies, and to improve power efficiency, Class-G/H drivers with a ground-center operation are used at the expense of using external components to decouple the required extra supply rails [1–3]. Closed-loop Class-D speaker drivers have become popular [4–6], and filter-less configurations are common in the 1-to-3W output range [6]. Some of the challenges associated with a Class-D driver for headphone applications are to maintain high linearity and SNR for low-voltage supply rails while reducing quiescent power. This paper describes a digital input, 93% efficient, filter-less Class-D amplifier achieving 113dB SNR and -93dB THD+N while operating from a single 1.8V supply.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"31.1 An 82mW ΔΣ - Based Filter-Less Class-D Headphone Amplifier with -93dB THD+N, 113dB SNR and 93% Efficiency\",\"authors\":\"A. Matamura, N. Nishimura, Preston Birdsong, A. Bandyopadhyay, Adam Spirer, M. Markova, Shaolong Liu\",\"doi\":\"10.1109/ISSCC42613.2021.9365773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"True Wireless Stereo/True Wireless Active-Noise-Canceling (ANC) headphones require low-latency digital-input headphone drivers that consume the lowest possible power to maximize battery life while providing high-fidelity audio playback. Typical headphone drivers use Class-A/AB topologies, and to improve power efficiency, Class-G/H drivers with a ground-center operation are used at the expense of using external components to decouple the required extra supply rails [1–3]. Closed-loop Class-D speaker drivers have become popular [4–6], and filter-less configurations are common in the 1-to-3W output range [6]. Some of the challenges associated with a Class-D driver for headphone applications are to maintain high linearity and SNR for low-voltage supply rails while reducing quiescent power. This paper describes a digital input, 93% efficient, filter-less Class-D amplifier achieving 113dB SNR and -93dB THD+N while operating from a single 1.8V supply.\",\"PeriodicalId\":371093,\"journal\":{\"name\":\"2021 IEEE International Solid- State Circuits Conference (ISSCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Solid- State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC42613.2021.9365773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9365773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
31.1 An 82mW ΔΣ - Based Filter-Less Class-D Headphone Amplifier with -93dB THD+N, 113dB SNR and 93% Efficiency
True Wireless Stereo/True Wireless Active-Noise-Canceling (ANC) headphones require low-latency digital-input headphone drivers that consume the lowest possible power to maximize battery life while providing high-fidelity audio playback. Typical headphone drivers use Class-A/AB topologies, and to improve power efficiency, Class-G/H drivers with a ground-center operation are used at the expense of using external components to decouple the required extra supply rails [1–3]. Closed-loop Class-D speaker drivers have become popular [4–6], and filter-less configurations are common in the 1-to-3W output range [6]. Some of the challenges associated with a Class-D driver for headphone applications are to maintain high linearity and SNR for low-voltage supply rails while reducing quiescent power. This paper describes a digital input, 93% efficient, filter-less Class-D amplifier achieving 113dB SNR and -93dB THD+N while operating from a single 1.8V supply.