更好地理解可视化在在线学习中的作用:综述

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2022-12-01 DOI:10.1016/j.visinf.2022.09.002
Gefei Zhang, Zihao Zhu, Sujia Zhu, Ronghua Liang, Guodao Sun
{"title":"更好地理解可视化在在线学习中的作用:综述","authors":"Gefei Zhang,&nbsp;Zihao Zhu,&nbsp;Sujia Zhu,&nbsp;Ronghua Liang,&nbsp;Guodao Sun","doi":"10.1016/j.visinf.2022.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>With the popularity of online learning in recent decades, MOOCs (Massive Open Online Courses) are increasingly pervasive and widely used in many areas. Visualizing online learning is particularly important because it helps to analyze learner performance, evaluate the effectiveness of online learning platforms, and predict dropout risks. Due to the large-scale, high-dimensional, and heterogeneous characteristics of the data obtained from online learning, it is difficult to find hidden information. In this paper, we review and classify the existing literature for online learning to better understand the role of visualization in online learning. Our taxonomy is based on four categorizations of online learning tasks: behavior analysis, behavior prediction, learning pattern exploration and assisted learning. Based on our review of relevant literature over the past decade, we also identify several remaining research challenges and future research work.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"6 4","pages":"Pages 22-33"},"PeriodicalIF":3.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X22000924/pdfft?md5=6b07edcfd3ec7f98bc46d186255d7604&pid=1-s2.0-S2468502X22000924-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Towards a better understanding of the role of visualization in online learning: A review\",\"authors\":\"Gefei Zhang,&nbsp;Zihao Zhu,&nbsp;Sujia Zhu,&nbsp;Ronghua Liang,&nbsp;Guodao Sun\",\"doi\":\"10.1016/j.visinf.2022.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the popularity of online learning in recent decades, MOOCs (Massive Open Online Courses) are increasingly pervasive and widely used in many areas. Visualizing online learning is particularly important because it helps to analyze learner performance, evaluate the effectiveness of online learning platforms, and predict dropout risks. Due to the large-scale, high-dimensional, and heterogeneous characteristics of the data obtained from online learning, it is difficult to find hidden information. In this paper, we review and classify the existing literature for online learning to better understand the role of visualization in online learning. Our taxonomy is based on four categorizations of online learning tasks: behavior analysis, behavior prediction, learning pattern exploration and assisted learning. Based on our review of relevant literature over the past decade, we also identify several remaining research challenges and future research work.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"6 4\",\"pages\":\"Pages 22-33\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468502X22000924/pdfft?md5=6b07edcfd3ec7f98bc46d186255d7604&pid=1-s2.0-S2468502X22000924-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X22000924\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X22000924","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

随着近几十年来在线学习的普及,mooc (Massive Open online Courses,大规模在线开放课程)越来越普及,并在许多领域得到广泛应用。可视化在线学习尤为重要,因为它有助于分析学习者的表现,评估在线学习平台的有效性,并预测辍学风险。由于在线学习获得的数据具有大规模、高维、异构的特点,很难发现隐藏的信息。在本文中,我们对现有的在线学习文献进行了回顾和分类,以更好地理解可视化在在线学习中的作用。我们的分类法基于四类在线学习任务:行为分析、行为预测、学习模式探索和辅助学习。基于我们对过去十年相关文献的回顾,我们还确定了几个研究挑战和未来的研究工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a better understanding of the role of visualization in online learning: A review

With the popularity of online learning in recent decades, MOOCs (Massive Open Online Courses) are increasingly pervasive and widely used in many areas. Visualizing online learning is particularly important because it helps to analyze learner performance, evaluate the effectiveness of online learning platforms, and predict dropout risks. Due to the large-scale, high-dimensional, and heterogeneous characteristics of the data obtained from online learning, it is difficult to find hidden information. In this paper, we review and classify the existing literature for online learning to better understand the role of visualization in online learning. Our taxonomy is based on four categorizations of online learning tasks: behavior analysis, behavior prediction, learning pattern exploration and assisted learning. Based on our review of relevant literature over the past decade, we also identify several remaining research challenges and future research work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Intelligent CAD 2.0 Editorial Board RelicCARD: Enhancing cultural relics exploration through semantics-based augmented reality tangible interaction design JobViz: Skill-driven visual exploration of job advertisements Visual evaluation of graph representation learning based on the presentation of community structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1