{"title":"具有新兴域壁器件的超鲁棒零约定逻辑电路","authors":"Yu Bai, Bo Hu, W. Kuang, Mingjie Lin","doi":"10.1145/2902961.2903019","DOIUrl":null,"url":null,"abstract":"Despite many attractive advantages, Null Convention Logic (NCL) remains to be a niche largely due to its high implementation costs. Using emerging spintronic devices, this paper proposes a Domain-Wall-Motion-based NCL circuit design methodology that achieves approximately 30× and 8× improvements in energy efficiency and chip layout area, respectively, over its equivalent CMOS design, while maintaining similar delay performance for a 32-bit full adder. These advantages are made possible mostly by exploiting the domain wall motion physics to natively realize the hysteresis critically needed in NCL. More Interestingly, this design choice achieves ultra-high robustness by allowing spintronic device parameters to vary within a predetermined range while still achieving correct operations.","PeriodicalId":407054,"journal":{"name":"2016 International Great Lakes Symposium on VLSI (GLSVLSI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ultra-robust null convention logic circuit with emerging domain wall devices\",\"authors\":\"Yu Bai, Bo Hu, W. Kuang, Mingjie Lin\",\"doi\":\"10.1145/2902961.2903019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite many attractive advantages, Null Convention Logic (NCL) remains to be a niche largely due to its high implementation costs. Using emerging spintronic devices, this paper proposes a Domain-Wall-Motion-based NCL circuit design methodology that achieves approximately 30× and 8× improvements in energy efficiency and chip layout area, respectively, over its equivalent CMOS design, while maintaining similar delay performance for a 32-bit full adder. These advantages are made possible mostly by exploiting the domain wall motion physics to natively realize the hysteresis critically needed in NCL. More Interestingly, this design choice achieves ultra-high robustness by allowing spintronic device parameters to vary within a predetermined range while still achieving correct operations.\",\"PeriodicalId\":407054,\"journal\":{\"name\":\"2016 International Great Lakes Symposium on VLSI (GLSVLSI)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Great Lakes Symposium on VLSI (GLSVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2902961.2903019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Great Lakes Symposium on VLSI (GLSVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2902961.2903019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultra-robust null convention logic circuit with emerging domain wall devices
Despite many attractive advantages, Null Convention Logic (NCL) remains to be a niche largely due to its high implementation costs. Using emerging spintronic devices, this paper proposes a Domain-Wall-Motion-based NCL circuit design methodology that achieves approximately 30× and 8× improvements in energy efficiency and chip layout area, respectively, over its equivalent CMOS design, while maintaining similar delay performance for a 32-bit full adder. These advantages are made possible mostly by exploiting the domain wall motion physics to natively realize the hysteresis critically needed in NCL. More Interestingly, this design choice achieves ultra-high robustness by allowing spintronic device parameters to vary within a predetermined range while still achieving correct operations.