基于多图谱配准的4D CT图像左心室自动分割

Guanyu Yang, Yang Chen, L. Tang, H. Shu, C. Toumoulin
{"title":"基于多图谱配准的4D CT图像左心室自动分割","authors":"Guanyu Yang, Yang Chen, L. Tang, H. Shu, C. Toumoulin","doi":"10.1109/ISBI.2014.6867896","DOIUrl":null,"url":null,"abstract":"Cardiac CT angiography (CCTA) is widely used in the diagnosis of coronary heart disease. It can provide 4D (3D + t) sequence with high spatial and temporal resolution. Segmentation of left ventricle (LV) in 4D CCTA sequence can provide useful information for clinical practice. In this paper, we present an automatic method for LV segmentation in 4D CCTA sequence in this paper. This method mainly relies on an accurate multi-atlas registration method. Thus, we first improve the multi-atlas registration method presented by Kirişli et al. by adding an extra registration step with an estimated heart mask. Then, we use a two-stage framework based on multi-atlas registration to segment the LV in the 4D sequence. Quantitative evaluation results show that our proposed multi-atlas registration method outperforms the Kirişli's method. Finally, experimental results using two 4D CCTA sequences indicate that our method can segment LV accurately.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Automatic left ventricle segmentation based on multiatlas registration in 4D CT images\",\"authors\":\"Guanyu Yang, Yang Chen, L. Tang, H. Shu, C. Toumoulin\",\"doi\":\"10.1109/ISBI.2014.6867896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiac CT angiography (CCTA) is widely used in the diagnosis of coronary heart disease. It can provide 4D (3D + t) sequence with high spatial and temporal resolution. Segmentation of left ventricle (LV) in 4D CCTA sequence can provide useful information for clinical practice. In this paper, we present an automatic method for LV segmentation in 4D CCTA sequence in this paper. This method mainly relies on an accurate multi-atlas registration method. Thus, we first improve the multi-atlas registration method presented by Kirişli et al. by adding an extra registration step with an estimated heart mask. Then, we use a two-stage framework based on multi-atlas registration to segment the LV in the 4D sequence. Quantitative evaluation results show that our proposed multi-atlas registration method outperforms the Kirişli's method. Finally, experimental results using two 4D CCTA sequences indicate that our method can segment LV accurately.\",\"PeriodicalId\":440405,\"journal\":{\"name\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2014.6867896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

心脏CT血管造影(CCTA)在冠心病的诊断中有着广泛的应用。可提供高时空分辨率的4D (3D + t)序列。4D CCTA序列对左心室(LV)的分割可以为临床提供有用的信息。本文提出了一种自动分割4D CCTA序列LV的方法。该方法主要依赖于精确的多地图集配准方法。因此,我们首先改进了kiri等人提出的多图谱配准方法,增加了一个带有估计心脏掩模的额外配准步骤。然后,我们使用基于多图谱配准的两阶段框架在4D序列中分割LV。定量评价结果表明,本文提出的多图谱配准方法优于kiri方法。最后,对两个4D CCTA序列的实验结果表明,该方法可以准确地分割LV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic left ventricle segmentation based on multiatlas registration in 4D CT images
Cardiac CT angiography (CCTA) is widely used in the diagnosis of coronary heart disease. It can provide 4D (3D + t) sequence with high spatial and temporal resolution. Segmentation of left ventricle (LV) in 4D CCTA sequence can provide useful information for clinical practice. In this paper, we present an automatic method for LV segmentation in 4D CCTA sequence in this paper. This method mainly relies on an accurate multi-atlas registration method. Thus, we first improve the multi-atlas registration method presented by Kirişli et al. by adding an extra registration step with an estimated heart mask. Then, we use a two-stage framework based on multi-atlas registration to segment the LV in the 4D sequence. Quantitative evaluation results show that our proposed multi-atlas registration method outperforms the Kirişli's method. Finally, experimental results using two 4D CCTA sequences indicate that our method can segment LV accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1