使用模拟尖峰神经元的深度神经网络可行性

Thomas Soupizet, Zalfa Jouni, João F. Sulzbach, A. Benlarbi-Delai, Pietro M. Ferreira
{"title":"使用模拟尖峰神经元的深度神经网络可行性","authors":"Thomas Soupizet, Zalfa Jouni, João F. Sulzbach, A. Benlarbi-Delai, Pietro M. Ferreira","doi":"10.1109/SBCCI55532.2022.9893216","DOIUrl":null,"url":null,"abstract":"Novel non-Von-Neumann solutions based on artificial intelligence (AI) have surfaced such as the neuromorphic spiking processors in either analog or digital domain. This paper proposes to study the feasibility of deep neural networks on ultra-low-power eNeuron technology. The trade-offs in terms of deep learning capabilities and energy efficiency are highlighted. This study reveals that published eNeurons and synapses satisfy linear fittings for an excitation current greater than 200 pA and a spiking frequency higher than 150 kHz, where energy efficiency is optimal. Thus, deep learning and energy efficiency are mutually exclusive for studied analog spiking neurons.","PeriodicalId":231587,"journal":{"name":"2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Neural Network Feasibility Using Analog Spiking Neurons\",\"authors\":\"Thomas Soupizet, Zalfa Jouni, João F. Sulzbach, A. Benlarbi-Delai, Pietro M. Ferreira\",\"doi\":\"10.1109/SBCCI55532.2022.9893216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel non-Von-Neumann solutions based on artificial intelligence (AI) have surfaced such as the neuromorphic spiking processors in either analog or digital domain. This paper proposes to study the feasibility of deep neural networks on ultra-low-power eNeuron technology. The trade-offs in terms of deep learning capabilities and energy efficiency are highlighted. This study reveals that published eNeurons and synapses satisfy linear fittings for an excitation current greater than 200 pA and a spiking frequency higher than 150 kHz, where energy efficiency is optimal. Thus, deep learning and energy efficiency are mutually exclusive for studied analog spiking neurons.\",\"PeriodicalId\":231587,\"journal\":{\"name\":\"2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBCCI55532.2022.9893216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBCCI55532.2022.9893216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于人工智能(AI)的新型非冯-诺伊曼解决方案已经出现,例如模拟或数字领域的神经形态尖峰处理器。本文提出研究深度神经网络在超低功耗eNeuron技术上的可行性。强调了深度学习能力和能源效率方面的权衡。该研究表明,已发表的神经元和突触满足激励电流大于200pa和峰值频率高于150khz的线性拟合,其中能量效率是最佳的。因此,深度学习和能量效率对于研究的模拟尖峰神经元是相互排斥的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Neural Network Feasibility Using Analog Spiking Neurons
Novel non-Von-Neumann solutions based on artificial intelligence (AI) have surfaced such as the neuromorphic spiking processors in either analog or digital domain. This paper proposes to study the feasibility of deep neural networks on ultra-low-power eNeuron technology. The trade-offs in terms of deep learning capabilities and energy efficiency are highlighted. This study reveals that published eNeurons and synapses satisfy linear fittings for an excitation current greater than 200 pA and a spiking frequency higher than 150 kHz, where energy efficiency is optimal. Thus, deep learning and energy efficiency are mutually exclusive for studied analog spiking neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transistor Reordering for Electrical Improvement in CMOS Complex Gates CSIP: A Compact Scrypt IP design with single PBKDF2 core for Blockchain mining A High-level Model to Leverage NoC-based Many-core Research Time Assisted SAR ADC with Bit-guess and Digital Error Correction A Time-Efficient Defect Simulation Framework for Analog and Mixed Signal (AMS) Circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1