基于微传感器的机器人与康复系统步态相位连续识别

R. Héliot, B. Espiau, F. Favre-Reguilion
{"title":"基于微传感器的机器人与康复系统步态相位连续识别","authors":"R. Héliot, B. Espiau, F. Favre-Reguilion","doi":"10.1109/ICAR.2005.1507483","DOIUrl":null,"url":null,"abstract":"Using microsensors for the robust and accurate analysis of human posture or gait is an interesting opportunity for rehabilitation and robotics applications. This paper describes a feasibility study in which the possibility of using a new type of embedded microsensors, based on the coupling of accelerometers and magnetometers, and developed by CEA/LETI is investigated. This study consists in identifying what part of the gait cycle is active by using a reconstruction of the knee joint angle by two microsensors fixed on tibia and thigh, during a steady-state sagittal walk. More than just an identification of a few gait states, this approach allows us to continuously extract the current position on the gait cycle. We compare the reconstructed knee joint angle with a stored reference taking into account uncertainties on the velocity and perturbations of the terrestrial magnetic field. To accurately identify the phase of the gait movement, we fuse different simple and complementary methods: morphomathematics, cyclogram analysis, wavelet transform, qualitative analysis, crosscorrelation. These results encourage us to extend this work to explore the possibility of recognition of a larger set of human movements using more sensors and improved algorithms of signal processing","PeriodicalId":428475,"journal":{"name":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Continuous identification of gait phase for robotics and rehabilitation using microsensors\",\"authors\":\"R. Héliot, B. Espiau, F. Favre-Reguilion\",\"doi\":\"10.1109/ICAR.2005.1507483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using microsensors for the robust and accurate analysis of human posture or gait is an interesting opportunity for rehabilitation and robotics applications. This paper describes a feasibility study in which the possibility of using a new type of embedded microsensors, based on the coupling of accelerometers and magnetometers, and developed by CEA/LETI is investigated. This study consists in identifying what part of the gait cycle is active by using a reconstruction of the knee joint angle by two microsensors fixed on tibia and thigh, during a steady-state sagittal walk. More than just an identification of a few gait states, this approach allows us to continuously extract the current position on the gait cycle. We compare the reconstructed knee joint angle with a stored reference taking into account uncertainties on the velocity and perturbations of the terrestrial magnetic field. To accurately identify the phase of the gait movement, we fuse different simple and complementary methods: morphomathematics, cyclogram analysis, wavelet transform, qualitative analysis, crosscorrelation. These results encourage us to extend this work to explore the possibility of recognition of a larger set of human movements using more sensors and improved algorithms of signal processing\",\"PeriodicalId\":428475,\"journal\":{\"name\":\"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2005.1507483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2005.1507483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

使用微传感器对人体姿势或步态进行稳健和准确的分析是康复和机器人应用的一个有趣的机会。本文介绍了一种由CEA/LETI开发的基于加速度计和磁力计耦合的新型嵌入式微传感器的可行性研究。本研究通过固定在胫骨和大腿上的两个微传感器重建膝关节角度,在稳定状态矢状行走期间,确定步态周期的哪一部分是活跃的。这种方法不仅仅是对几种步态状态的识别,还允许我们连续地提取步态周期上的当前位置。考虑到速度的不确定性和地磁场的扰动,我们将重建的膝关节角度与存储的参考进行了比较。为了准确识别步态运动的相位,我们融合了不同的简单而互补的方法:形态数学、环图分析、小波变换、定性分析、相互关联。这些结果鼓励我们扩展这项工作,探索使用更多传感器和改进的信号处理算法来识别更大范围的人类运动的可能性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Continuous identification of gait phase for robotics and rehabilitation using microsensors
Using microsensors for the robust and accurate analysis of human posture or gait is an interesting opportunity for rehabilitation and robotics applications. This paper describes a feasibility study in which the possibility of using a new type of embedded microsensors, based on the coupling of accelerometers and magnetometers, and developed by CEA/LETI is investigated. This study consists in identifying what part of the gait cycle is active by using a reconstruction of the knee joint angle by two microsensors fixed on tibia and thigh, during a steady-state sagittal walk. More than just an identification of a few gait states, this approach allows us to continuously extract the current position on the gait cycle. We compare the reconstructed knee joint angle with a stored reference taking into account uncertainties on the velocity and perturbations of the terrestrial magnetic field. To accurately identify the phase of the gait movement, we fuse different simple and complementary methods: morphomathematics, cyclogram analysis, wavelet transform, qualitative analysis, crosscorrelation. These results encourage us to extend this work to explore the possibility of recognition of a larger set of human movements using more sensors and improved algorithms of signal processing
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Manipulator robotics in use for decommissioning of A-1 nuclear power plant An approach to modelling collaborative teleoperation Intestinal locomotion by means of mucoadhesive films Kalman filters comparison for vehicle localization data alignment An omnidirectional vehicle on a basketball
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1