{"title":"人工智能在心血管研究、诊断和疾病管理中的应用","authors":"V. Rajagopalan, Houwei Cao","doi":"10.4018/978-1-7998-8455-2.ch004","DOIUrl":null,"url":null,"abstract":"Despite significant advancements in diagnosis and disease management, cardiovascular (CV) disorders remain the No. 1 killer both in the United States and across the world, and innovative and transformative technologies such as artificial intelligence (AI) are increasingly employed in CV medicine. In this chapter, the authors introduce different AI and machine learning (ML) tools including support vector machine (SVM), gradient boosting machine (GBM), and deep learning models (DL), and their applicability to advance CV diagnosis and disease classification, and risk prediction and patient management. The applications include, but are not limited to, electrocardiogram, imaging, genomics, and drug research in different CV pathologies such as myocardial infarction (heart attack), heart failure, congenital heart disease, arrhythmias, valvular abnormalities, etc.","PeriodicalId":250689,"journal":{"name":"Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiovascular Applications of Artificial Intelligence in Research, Diagnosis, and Disease Management\",\"authors\":\"V. Rajagopalan, Houwei Cao\",\"doi\":\"10.4018/978-1-7998-8455-2.ch004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite significant advancements in diagnosis and disease management, cardiovascular (CV) disorders remain the No. 1 killer both in the United States and across the world, and innovative and transformative technologies such as artificial intelligence (AI) are increasingly employed in CV medicine. In this chapter, the authors introduce different AI and machine learning (ML) tools including support vector machine (SVM), gradient boosting machine (GBM), and deep learning models (DL), and their applicability to advance CV diagnosis and disease classification, and risk prediction and patient management. The applications include, but are not limited to, electrocardiogram, imaging, genomics, and drug research in different CV pathologies such as myocardial infarction (heart attack), heart failure, congenital heart disease, arrhythmias, valvular abnormalities, etc.\",\"PeriodicalId\":250689,\"journal\":{\"name\":\"Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-8455-2.ch004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-8455-2.ch004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cardiovascular Applications of Artificial Intelligence in Research, Diagnosis, and Disease Management
Despite significant advancements in diagnosis and disease management, cardiovascular (CV) disorders remain the No. 1 killer both in the United States and across the world, and innovative and transformative technologies such as artificial intelligence (AI) are increasingly employed in CV medicine. In this chapter, the authors introduce different AI and machine learning (ML) tools including support vector machine (SVM), gradient boosting machine (GBM), and deep learning models (DL), and their applicability to advance CV diagnosis and disease classification, and risk prediction and patient management. The applications include, but are not limited to, electrocardiogram, imaging, genomics, and drug research in different CV pathologies such as myocardial infarction (heart attack), heart failure, congenital heart disease, arrhythmias, valvular abnormalities, etc.