人工智能在心血管研究、诊断和疾病管理中的应用

V. Rajagopalan, Houwei Cao
{"title":"人工智能在心血管研究、诊断和疾病管理中的应用","authors":"V. Rajagopalan, Houwei Cao","doi":"10.4018/978-1-7998-8455-2.ch004","DOIUrl":null,"url":null,"abstract":"Despite significant advancements in diagnosis and disease management, cardiovascular (CV) disorders remain the No. 1 killer both in the United States and across the world, and innovative and transformative technologies such as artificial intelligence (AI) are increasingly employed in CV medicine. In this chapter, the authors introduce different AI and machine learning (ML) tools including support vector machine (SVM), gradient boosting machine (GBM), and deep learning models (DL), and their applicability to advance CV diagnosis and disease classification, and risk prediction and patient management. The applications include, but are not limited to, electrocardiogram, imaging, genomics, and drug research in different CV pathologies such as myocardial infarction (heart attack), heart failure, congenital heart disease, arrhythmias, valvular abnormalities, etc.","PeriodicalId":250689,"journal":{"name":"Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiovascular Applications of Artificial Intelligence in Research, Diagnosis, and Disease Management\",\"authors\":\"V. Rajagopalan, Houwei Cao\",\"doi\":\"10.4018/978-1-7998-8455-2.ch004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite significant advancements in diagnosis and disease management, cardiovascular (CV) disorders remain the No. 1 killer both in the United States and across the world, and innovative and transformative technologies such as artificial intelligence (AI) are increasingly employed in CV medicine. In this chapter, the authors introduce different AI and machine learning (ML) tools including support vector machine (SVM), gradient boosting machine (GBM), and deep learning models (DL), and their applicability to advance CV diagnosis and disease classification, and risk prediction and patient management. The applications include, but are not limited to, electrocardiogram, imaging, genomics, and drug research in different CV pathologies such as myocardial infarction (heart attack), heart failure, congenital heart disease, arrhythmias, valvular abnormalities, etc.\",\"PeriodicalId\":250689,\"journal\":{\"name\":\"Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-8455-2.ch004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-8455-2.ch004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管在诊断和疾病管理方面取得了重大进展,但心血管(CV)疾病仍然是美国和世界各地的头号杀手,人工智能(AI)等创新和变革性技术越来越多地应用于心血管医学。在本章中,作者介绍了不同的人工智能和机器学习(ML)工具,包括支持向量机(SVM)、梯度增强机(GBM)和深度学习模型(DL),以及它们在推进CV诊断和疾病分类、风险预测和患者管理方面的适用性。应用包括但不限于心电图、成像、基因组学和不同心血管病理(如心肌梗死(心脏病发作)、心力衰竭、先天性心脏病、心律失常、瓣膜异常等)的药物研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cardiovascular Applications of Artificial Intelligence in Research, Diagnosis, and Disease Management
Despite significant advancements in diagnosis and disease management, cardiovascular (CV) disorders remain the No. 1 killer both in the United States and across the world, and innovative and transformative technologies such as artificial intelligence (AI) are increasingly employed in CV medicine. In this chapter, the authors introduce different AI and machine learning (ML) tools including support vector machine (SVM), gradient boosting machine (GBM), and deep learning models (DL), and their applicability to advance CV diagnosis and disease classification, and risk prediction and patient management. The applications include, but are not limited to, electrocardiogram, imaging, genomics, and drug research in different CV pathologies such as myocardial infarction (heart attack), heart failure, congenital heart disease, arrhythmias, valvular abnormalities, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Airbnb (Air Bed and Breakfast) Listing Analysis Through Machine Learning Techniques Value Analysis and Prediction Through Machine Learning Techniques for Popular Basketball Brands Protein-Protein Interactions (PPI) via Deep Neural Network (DNN) US Medical Expense Analysis Through Frequency and Severity Bootstrapping and Regression Model Inflation Rate Modelling Through a Hybrid Model of Seasonal Autoregressive Moving Average and Multilayer Perceptron Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1