基于生成对抗网络和优化交叉优化支持向量回归的绝缘子漏电流预测

Huiting Wen, Jianfeng Zhang, Huikang Wen, Jian Wu, Xiaoning Zhao, Weili Lin, Haitao Zhang
{"title":"基于生成对抗网络和优化交叉优化支持向量回归的绝缘子漏电流预测","authors":"Huiting Wen, Jianfeng Zhang, Huikang Wen, Jian Wu, Xiaoning Zhao, Weili Lin, Haitao Zhang","doi":"10.1109/CEECT55960.2022.10030195","DOIUrl":null,"url":null,"abstract":"Current methods for insulator leakage current prediction usually cannot guarantee satisfactory accuracy. To address this issue, a novel prediction method is proposed based on gradient penalized Wasserstein generating adversarial network (WGAN-GP) and an improved support vector regression (SVR) model. The proposed model can: 1) learn the distribution pattern of the real data and generate high-quality training data; 2) optimize parameters of SVR model through the crisscross optimization algorithm (CSO), and 3) improve the prediction accuracy. Owing to the unique gradient penalty, the WGAN-GP network is firstly used to generate high-quality training samples and achieve data augmentation. Then CSO is applied to optimize the model parameters of SVR and thus an improved prediction model is constructed. Finally, the generated data and optimized parameters are applied in the proposed method to predict the insulator leakage current. Experimental results show that the proposed method outperforms the state-of-the-art models in all evaluation indexes and improves the prediction accuracy.","PeriodicalId":187017,"journal":{"name":"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insulator leakage current prediction based on generative adversarial networks and optimized support vector regression with crisscross optimization algorithm\",\"authors\":\"Huiting Wen, Jianfeng Zhang, Huikang Wen, Jian Wu, Xiaoning Zhao, Weili Lin, Haitao Zhang\",\"doi\":\"10.1109/CEECT55960.2022.10030195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current methods for insulator leakage current prediction usually cannot guarantee satisfactory accuracy. To address this issue, a novel prediction method is proposed based on gradient penalized Wasserstein generating adversarial network (WGAN-GP) and an improved support vector regression (SVR) model. The proposed model can: 1) learn the distribution pattern of the real data and generate high-quality training data; 2) optimize parameters of SVR model through the crisscross optimization algorithm (CSO), and 3) improve the prediction accuracy. Owing to the unique gradient penalty, the WGAN-GP network is firstly used to generate high-quality training samples and achieve data augmentation. Then CSO is applied to optimize the model parameters of SVR and thus an improved prediction model is constructed. Finally, the generated data and optimized parameters are applied in the proposed method to predict the insulator leakage current. Experimental results show that the proposed method outperforms the state-of-the-art models in all evaluation indexes and improves the prediction accuracy.\",\"PeriodicalId\":187017,\"journal\":{\"name\":\"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEECT55960.2022.10030195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEECT55960.2022.10030195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的绝缘子泄漏电流预测方法往往不能保证令人满意的精度。针对这一问题,提出了一种基于梯度惩罚Wasserstein生成对抗网络(WGAN-GP)和改进支持向量回归(SVR)模型的预测方法。该模型可以:1)学习真实数据的分布模式,生成高质量的训练数据;2)通过交叉优化算法(CSO)优化SVR模型参数;3)提高预测精度。由于具有独特的梯度惩罚,首先利用WGAN-GP网络生成高质量的训练样本并实现数据增强。然后利用CSO对支持向量回归模型参数进行优化,构建改进的预测模型。最后,将生成的数据和优化后的参数应用于该方法中进行绝缘子泄漏电流的预测。实验结果表明,该方法在各评价指标上均优于现有模型,提高了预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insulator leakage current prediction based on generative adversarial networks and optimized support vector regression with crisscross optimization algorithm
Current methods for insulator leakage current prediction usually cannot guarantee satisfactory accuracy. To address this issue, a novel prediction method is proposed based on gradient penalized Wasserstein generating adversarial network (WGAN-GP) and an improved support vector regression (SVR) model. The proposed model can: 1) learn the distribution pattern of the real data and generate high-quality training data; 2) optimize parameters of SVR model through the crisscross optimization algorithm (CSO), and 3) improve the prediction accuracy. Owing to the unique gradient penalty, the WGAN-GP network is firstly used to generate high-quality training samples and achieve data augmentation. Then CSO is applied to optimize the model parameters of SVR and thus an improved prediction model is constructed. Finally, the generated data and optimized parameters are applied in the proposed method to predict the insulator leakage current. Experimental results show that the proposed method outperforms the state-of-the-art models in all evaluation indexes and improves the prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimization model based interval power flow analysis method considering the tracking characteristic of static voltage generator Design of Liquid Level Monitoring and Alarm System in Transformer Accident Oil Pool Mechanism Analysis of the SSR Suppression in DFIG-Based Wind farm Systems with SVCs Evaluation Method of Aging State of Oil-Paper Insulation Based on Time Domain Dielectric Response Study on the Effect of Multi-circuit Laying on Ampacity of Low Smoke Halogen-free Cable
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1