具有任意数量臂和混合刚性/弹性关节的原中心航空机械臂的差分平整度和控制

Burak Yuksel, Gabriele Buondonno, A. Franchi
{"title":"具有任意数量臂和混合刚性/弹性关节的原中心航空机械臂的差分平整度和控制","authors":"Burak Yuksel, Gabriele Buondonno, A. Franchi","doi":"10.1109/IROS.2016.7759109","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a particularly relevant class of aerial manipulators that we name protocentric. These robots are formed by an underactuated aerial vehicle, a planar-Vertical Take-Off and Landing (PVTOL), equipped with any number of different parallel manipulator arms with the only property that all the first joints are attached at the Center of Mass (CoM) of the PVTOL, while the center of actuation of the PVTOL can be anywhere. We prove that protocentric aerial manipulators (PAMs) are differentially flat systems regardless the number of joints of each arm and their kinematic and dynamic parameters. The set of flat outputs is constituted by the CoM of the PVTOL and the absolute orientation angles of all the links. The relative degree of each output is equal to four. More amazingly, we prove that PAMs are differentially flat even in the case that any number of the joints are elastic, no matter the internal distribution between elastic and rigid joints. The set of flat outputs is the same but in this case the total relative degree grows quadratically with the number of elastic joints. We validate the theory by simulating object grasping and transportation tasks with unknown mass and parameters and using a controller based on dynamic feedback linearization.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints\",\"authors\":\"Burak Yuksel, Gabriele Buondonno, A. Franchi\",\"doi\":\"10.1109/IROS.2016.7759109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a particularly relevant class of aerial manipulators that we name protocentric. These robots are formed by an underactuated aerial vehicle, a planar-Vertical Take-Off and Landing (PVTOL), equipped with any number of different parallel manipulator arms with the only property that all the first joints are attached at the Center of Mass (CoM) of the PVTOL, while the center of actuation of the PVTOL can be anywhere. We prove that protocentric aerial manipulators (PAMs) are differentially flat systems regardless the number of joints of each arm and their kinematic and dynamic parameters. The set of flat outputs is constituted by the CoM of the PVTOL and the absolute orientation angles of all the links. The relative degree of each output is equal to four. More amazingly, we prove that PAMs are differentially flat even in the case that any number of the joints are elastic, no matter the internal distribution between elastic and rigid joints. The set of flat outputs is the same but in this case the total relative degree grows quadratically with the number of elastic joints. We validate the theory by simulating object grasping and transportation tasks with unknown mass and parameters and using a controller based on dynamic feedback linearization.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

在本文中,我们介绍了一类特别相关的空中机械手,我们称之为原中心。这些机器人是由一种未驱动的飞行器,即平面垂直起降飞行器(PVTOL)组成的,它配备了任意数量的不同的并联机械臂,唯一的特点是所有的第一关节都附着在PVTOL的质心(CoM)上,而PVTOL的驱动中心可以在任何地方。证明了无论每个机械臂的关节数量及其运动学和动力学参数如何,原中心航空机械臂都是差分平面系统。平面输出集由PVTOL的CoM和各连杆的绝对方位角组成。每个输出的相对度数等于4。更令人惊讶的是,我们证明了即使在任意数量的弹性关节的情况下,无论弹性和刚性关节之间的内部分布如何,pam都是差分平坦的。平面输出的集合是相同的,但在这种情况下,总的相对程度随着弹性节点的数量呈二次增长。我们通过模拟未知质量和参数的物体抓取和运输任务,并使用基于动态反馈线性化的控制器来验证该理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints
In this paper we introduce a particularly relevant class of aerial manipulators that we name protocentric. These robots are formed by an underactuated aerial vehicle, a planar-Vertical Take-Off and Landing (PVTOL), equipped with any number of different parallel manipulator arms with the only property that all the first joints are attached at the Center of Mass (CoM) of the PVTOL, while the center of actuation of the PVTOL can be anywhere. We prove that protocentric aerial manipulators (PAMs) are differentially flat systems regardless the number of joints of each arm and their kinematic and dynamic parameters. The set of flat outputs is constituted by the CoM of the PVTOL and the absolute orientation angles of all the links. The relative degree of each output is equal to four. More amazingly, we prove that PAMs are differentially flat even in the case that any number of the joints are elastic, no matter the internal distribution between elastic and rigid joints. The set of flat outputs is the same but in this case the total relative degree grows quadratically with the number of elastic joints. We validate the theory by simulating object grasping and transportation tasks with unknown mass and parameters and using a controller based on dynamic feedback linearization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A passivity-based admittance control design using feedback interconnections Performance comparison of Wave Variable Transformation and Time Domain Passivity Approaches for time-delayed teleoperation: Preliminary results Iterative path optimisation for personalised dressing assistance using vision and force information Hand-eye calibration for robotic assisted minimally invasive surgery without a calibration object Modelling and dynamic analysis of underactuated capsule systems with friction-induced hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1