基于改进K-means的EV聚集建模

Wenshan Xiao, Jun Wu, Zihui Guo, Wenxin Huang, Zichen Liu
{"title":"基于改进K-means的EV聚集建模","authors":"Wenshan Xiao, Jun Wu, Zihui Guo, Wenxin Huang, Zichen Liu","doi":"10.1117/12.2689418","DOIUrl":null,"url":null,"abstract":"An improved K-means clustering algorithm based on the initial clustering center is used to cluster the charging data of electric vehicles. The multi-classification method is studied, and the clustering effect of different number of clusters is analyzed with the contour coefficient as the evaluation standard. The simulation results show that this method can properly cluster the group characteristics of electric vehicles","PeriodicalId":118234,"journal":{"name":"4th International Conference on Information Science, Electrical and Automation Engineering","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EV aggregation modeling based on improved K-means\",\"authors\":\"Wenshan Xiao, Jun Wu, Zihui Guo, Wenxin Huang, Zichen Liu\",\"doi\":\"10.1117/12.2689418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved K-means clustering algorithm based on the initial clustering center is used to cluster the charging data of electric vehicles. The multi-classification method is studied, and the clustering effect of different number of clusters is analyzed with the contour coefficient as the evaluation standard. The simulation results show that this method can properly cluster the group characteristics of electric vehicles\",\"PeriodicalId\":118234,\"journal\":{\"name\":\"4th International Conference on Information Science, Electrical and Automation Engineering\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Conference on Information Science, Electrical and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2689418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Information Science, Electrical and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2689418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用改进的基于初始聚类中心的k均值聚类算法对电动汽车充电数据进行聚类。研究了多重分类方法,并以轮廓系数为评价标准,分析了不同聚类数的聚类效果。仿真结果表明,该方法能较好地对电动汽车的群体特征进行聚类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EV aggregation modeling based on improved K-means
An improved K-means clustering algorithm based on the initial clustering center is used to cluster the charging data of electric vehicles. The multi-classification method is studied, and the clustering effect of different number of clusters is analyzed with the contour coefficient as the evaluation standard. The simulation results show that this method can properly cluster the group characteristics of electric vehicles
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A smart brain controlled wheelchair based on TGAM Multi-direction prediction based on SALSTM model for ship motion Study on heart disease prediction based on SVM-GBDT hybrid model Research on intelligent monitoring of roof distributed photovoltaics based on high-reliable power line and wireless communication Design of low-power acceleration processor for convolutional neural networks based on RISC-V
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1