基于隐马尔可夫模型的光谱匹配

Jing Fu, Ning Shu, Xiangbing Kong
{"title":"基于隐马尔可夫模型的光谱匹配","authors":"Jing Fu, Ning Shu, Xiangbing Kong","doi":"10.1117/12.910404","DOIUrl":null,"url":null,"abstract":"Combined with traditional image information and spectral information, hyperspectral remote sensing could not only get the space information about the surface of the earth, but also obtain continuous spectrum of single pixel. Spectral matching technique is one of the key technologies of imaging spectroscopy remote sensing classification and target detection. Spectral characteristics can be used to identify surface features category in hyperspectral remote sensing. The traditional method of spectral matching includes the minimum Euclidean distance matching, spectral angle matching and spectral similarity matching. SAM (spectral angle matching) is better than others, but the discrimination is not high, and usually could not get a satisfactory result. This paper gives a proposal that introducing and using the hidden Markov model to describe the pixel spectral characteristics, and then compare this method with several commonly used methods by using the standard USGS spectral library data in the experiment.","PeriodicalId":340728,"journal":{"name":"China Symposium on Remote Sensing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral matching based on hidden Markov model\",\"authors\":\"Jing Fu, Ning Shu, Xiangbing Kong\",\"doi\":\"10.1117/12.910404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combined with traditional image information and spectral information, hyperspectral remote sensing could not only get the space information about the surface of the earth, but also obtain continuous spectrum of single pixel. Spectral matching technique is one of the key technologies of imaging spectroscopy remote sensing classification and target detection. Spectral characteristics can be used to identify surface features category in hyperspectral remote sensing. The traditional method of spectral matching includes the minimum Euclidean distance matching, spectral angle matching and spectral similarity matching. SAM (spectral angle matching) is better than others, but the discrimination is not high, and usually could not get a satisfactory result. This paper gives a proposal that introducing and using the hidden Markov model to describe the pixel spectral characteristics, and then compare this method with several commonly used methods by using the standard USGS spectral library data in the experiment.\",\"PeriodicalId\":340728,\"journal\":{\"name\":\"China Symposium on Remote Sensing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Symposium on Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.910404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Symposium on Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.910404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高光谱遥感将传统的图像信息与光谱信息相结合,不仅可以获得地球表面的空间信息,而且可以获得单像元的连续光谱。光谱匹配技术是成像光谱遥感分类与目标检测的关键技术之一。光谱特征可以用于高光谱遥感地物分类的识别。传统的光谱匹配方法包括最小欧氏距离匹配、光谱角匹配和光谱相似度匹配。SAM(光谱角匹配)是一种较好的方法,但分辨力不高,通常不能得到满意的结果。本文提出了引入隐马尔可夫模型来描述像元光谱特征的方法,并利用USGS标准谱库数据与常用的几种方法进行了对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectral matching based on hidden Markov model
Combined with traditional image information and spectral information, hyperspectral remote sensing could not only get the space information about the surface of the earth, but also obtain continuous spectrum of single pixel. Spectral matching technique is one of the key technologies of imaging spectroscopy remote sensing classification and target detection. Spectral characteristics can be used to identify surface features category in hyperspectral remote sensing. The traditional method of spectral matching includes the minimum Euclidean distance matching, spectral angle matching and spectral similarity matching. SAM (spectral angle matching) is better than others, but the discrimination is not high, and usually could not get a satisfactory result. This paper gives a proposal that introducing and using the hidden Markov model to describe the pixel spectral characteristics, and then compare this method with several commonly used methods by using the standard USGS spectral library data in the experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on optimal path planning algorithm of task-oriented optical remote sensing satellites On-orbit geometric calibration and validation of Optical-1 HR Effectiveness analysis of ACOS-Xco2 bias correction method with GEOS-Chem model results Research on geometric rectification of the Large FOV Linear Array Whiskbroom Image Temporal and spatial analysis of global GOSAT XCO2 variations characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1