{"title":"多目标优化的非代遗传算法","authors":"C. Borges, H. Barbosa","doi":"10.1109/CEC.2000.870292","DOIUrl":null,"url":null,"abstract":"In this paper a non-generational genetic algorithm for multiobjective optimization problems is proposed. For each element in the population a domination count is defined together with a neighborhood density measure based on a sharing function. Those two measures are then nonlinearly combined in order to define the individual's fitness. Numerical experiments with four test-problems taken from the evolutionary multiobjective literature are performed and the results are compared with those obtained by other evolutionary techniques.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A non-generational genetic algorithm for multiobjective optimization\",\"authors\":\"C. Borges, H. Barbosa\",\"doi\":\"10.1109/CEC.2000.870292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a non-generational genetic algorithm for multiobjective optimization problems is proposed. For each element in the population a domination count is defined together with a neighborhood density measure based on a sharing function. Those two measures are then nonlinearly combined in order to define the individual's fitness. Numerical experiments with four test-problems taken from the evolutionary multiobjective literature are performed and the results are compared with those obtained by other evolutionary techniques.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A non-generational genetic algorithm for multiobjective optimization
In this paper a non-generational genetic algorithm for multiobjective optimization problems is proposed. For each element in the population a domination count is defined together with a neighborhood density measure based on a sharing function. Those two measures are then nonlinearly combined in order to define the individual's fitness. Numerical experiments with four test-problems taken from the evolutionary multiobjective literature are performed and the results are compared with those obtained by other evolutionary techniques.