Abdoalbaset Abohmra, H. Abbas, Masood Ur Rehman, M. Imran, Q. Abbasi
{"title":"面向未来无线通信的柔性可穿戴太赫兹天线","authors":"Abdoalbaset Abohmra, H. Abbas, Masood Ur Rehman, M. Imran, Q. Abbasi","doi":"10.1109/iWAT54881.2022.9810911","DOIUrl":null,"url":null,"abstract":"With the help of CsPbBr3 perovskite quantum material, we propose a wearable antenna that operates in the terahertz frequency range. CsPbBr3 was specifically employed to improve the performance of the antenna, and the findings reveal that the reflection coefficient and radiation efficiency of the antenna are improved. The performance of the antenna is assessed both on the skin and in free space. Based on the simulation findings, the suggested antenna has a bandwidth of 29 GHz and provides radiation efficiency of 90% in free-space and 45% on the human body. Moreover, gains of 4.5dBi and 6.2dBi, respectively, in the free space and human body scenarios are achieved. As a result of the antenna’s tiny and flexible construction, as well as its outstanding impedance matching and high efficiency, it is a great option for short-distance wireless communication in close proximity to the human body.","PeriodicalId":106416,"journal":{"name":"2022 International Workshop on Antenna Technology (iWAT)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible and Wearable Terahertz Antenna for Future Wireless Communication\",\"authors\":\"Abdoalbaset Abohmra, H. Abbas, Masood Ur Rehman, M. Imran, Q. Abbasi\",\"doi\":\"10.1109/iWAT54881.2022.9810911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the help of CsPbBr3 perovskite quantum material, we propose a wearable antenna that operates in the terahertz frequency range. CsPbBr3 was specifically employed to improve the performance of the antenna, and the findings reveal that the reflection coefficient and radiation efficiency of the antenna are improved. The performance of the antenna is assessed both on the skin and in free space. Based on the simulation findings, the suggested antenna has a bandwidth of 29 GHz and provides radiation efficiency of 90% in free-space and 45% on the human body. Moreover, gains of 4.5dBi and 6.2dBi, respectively, in the free space and human body scenarios are achieved. As a result of the antenna’s tiny and flexible construction, as well as its outstanding impedance matching and high efficiency, it is a great option for short-distance wireless communication in close proximity to the human body.\",\"PeriodicalId\":106416,\"journal\":{\"name\":\"2022 International Workshop on Antenna Technology (iWAT)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Workshop on Antenna Technology (iWAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iWAT54881.2022.9810911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Workshop on Antenna Technology (iWAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iWAT54881.2022.9810911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flexible and Wearable Terahertz Antenna for Future Wireless Communication
With the help of CsPbBr3 perovskite quantum material, we propose a wearable antenna that operates in the terahertz frequency range. CsPbBr3 was specifically employed to improve the performance of the antenna, and the findings reveal that the reflection coefficient and radiation efficiency of the antenna are improved. The performance of the antenna is assessed both on the skin and in free space. Based on the simulation findings, the suggested antenna has a bandwidth of 29 GHz and provides radiation efficiency of 90% in free-space and 45% on the human body. Moreover, gains of 4.5dBi and 6.2dBi, respectively, in the free space and human body scenarios are achieved. As a result of the antenna’s tiny and flexible construction, as well as its outstanding impedance matching and high efficiency, it is a great option for short-distance wireless communication in close proximity to the human body.