{"title":"复合PPSO在CEC 2022单目标有界约束数值优化问题上的性能","authors":"Bo Sun, Wei Li, Y. Huang","doi":"10.1109/CEC55065.2022.9870369","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization has been extensively noticed for its fast convergence speed with few parameters. However, it would be plagued by the premature convergence only affected by the global particles. In this study, Composite Proactive Particles in Swarm Optimization (Co-PPSO) is proposed. In Co-PPSO, the composite strategy framework is embedded into Proactive Particles in Swarm Optimization (PPSO), that is, three learning strategies are proposed to evaluate their differences and select the most suitable one for each particle. In addition, an elite group is constructed to make the particles jump out of the situation that they are only affected by the global best one in the particle swarm, and further improve the convergence accuracy. CEC2022 competition of single objective bound-constrained numerical optimization is employed to test the effect of 10-$D$ and 20-$D$ optimization, and four well-known PSO variants were used for comparison. The experimental results show that the Co-PPSO has certain competitiveness to improve premature convergence.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Performance of Composite PPSO on Single Objective Bound Constrained Numerical Optimization Problems of CEC 2022\",\"authors\":\"Bo Sun, Wei Li, Y. Huang\",\"doi\":\"10.1109/CEC55065.2022.9870369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimization has been extensively noticed for its fast convergence speed with few parameters. However, it would be plagued by the premature convergence only affected by the global particles. In this study, Composite Proactive Particles in Swarm Optimization (Co-PPSO) is proposed. In Co-PPSO, the composite strategy framework is embedded into Proactive Particles in Swarm Optimization (PPSO), that is, three learning strategies are proposed to evaluate their differences and select the most suitable one for each particle. In addition, an elite group is constructed to make the particles jump out of the situation that they are only affected by the global best one in the particle swarm, and further improve the convergence accuracy. CEC2022 competition of single objective bound-constrained numerical optimization is employed to test the effect of 10-$D$ and 20-$D$ optimization, and four well-known PSO variants were used for comparison. The experimental results show that the Co-PPSO has certain competitiveness to improve premature convergence.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
粒子群算法以其收敛速度快、参数少而受到广泛关注。但是,它会受到仅受全局粒子影响的过早收敛的困扰。本研究提出了一种复合主动粒子群优化算法(Co-PPSO)。在Co-PPSO中,将复合策略框架嵌入到主动粒子群优化(Proactive Particles In Swarm Optimization, PPSO)中,提出了三种学习策略来评估它们之间的差异,并为每个粒子选择最合适的学习策略。此外,构造了一个精英群,使粒子群跳出了粒子群中只受全局最优粒子影响的局面,进一步提高了收敛精度。采用CEC2022竞争单目标约束数值优化来测试10-$D$和20-$D$优化的效果,并使用四种知名的PSO变体进行比较。实验结果表明,Co-PPSO在改善过早收敛方面具有一定的竞争力。
Performance of Composite PPSO on Single Objective Bound Constrained Numerical Optimization Problems of CEC 2022
Particle swarm optimization has been extensively noticed for its fast convergence speed with few parameters. However, it would be plagued by the premature convergence only affected by the global particles. In this study, Composite Proactive Particles in Swarm Optimization (Co-PPSO) is proposed. In Co-PPSO, the composite strategy framework is embedded into Proactive Particles in Swarm Optimization (PPSO), that is, three learning strategies are proposed to evaluate their differences and select the most suitable one for each particle. In addition, an elite group is constructed to make the particles jump out of the situation that they are only affected by the global best one in the particle swarm, and further improve the convergence accuracy. CEC2022 competition of single objective bound-constrained numerical optimization is employed to test the effect of 10-$D$ and 20-$D$ optimization, and four well-known PSO variants were used for comparison. The experimental results show that the Co-PPSO has certain competitiveness to improve premature convergence.