{"title":"多层金属化系统的热电力学模拟","authors":"Yanpeng Liu, K. Weide-Zaage","doi":"10.1109/EUROSIME.2016.7463354","DOIUrl":null,"url":null,"abstract":"In modern metallization systems mechanical stress due to CTE mismatch is one of the reliability problems. With the help of finite element simulations the thermal-electrical-mechanical behavior can be calculated. The use of a reference temperature for the stress free state in the simulations is insufficient to determine the stress field in the metallization. The intrinsic stress resulting from the processing is hereby not considered. The simulation of the process steps by the birth and die capability of ANSYS is time consuming and complex. A possibility to consider the intrinsic stress in the metallization system is the use of averaged CTEs from measurements of a multi-level stack depending on the horizontal running direction of the interconnect in the x- or y-direction, or in from literature. The values were taken for a comparison between calculated stress field of the stacked metallization system with process steps and the reference temperature for the stress free state. The achieved simulation results help for a better understanding of the stress behavior.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal-electric-mechanical simulation of a multilevel metallization system\",\"authors\":\"Yanpeng Liu, K. Weide-Zaage\",\"doi\":\"10.1109/EUROSIME.2016.7463354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern metallization systems mechanical stress due to CTE mismatch is one of the reliability problems. With the help of finite element simulations the thermal-electrical-mechanical behavior can be calculated. The use of a reference temperature for the stress free state in the simulations is insufficient to determine the stress field in the metallization. The intrinsic stress resulting from the processing is hereby not considered. The simulation of the process steps by the birth and die capability of ANSYS is time consuming and complex. A possibility to consider the intrinsic stress in the metallization system is the use of averaged CTEs from measurements of a multi-level stack depending on the horizontal running direction of the interconnect in the x- or y-direction, or in from literature. The values were taken for a comparison between calculated stress field of the stacked metallization system with process steps and the reference temperature for the stress free state. The achieved simulation results help for a better understanding of the stress behavior.\",\"PeriodicalId\":438097,\"journal\":{\"name\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2016.7463354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2016.7463354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现代金属化系统中,由CTE失配引起的机械应力是可靠性问题之一。在有限元模拟的帮助下,可以计算出热电力学性能。在模拟中使用无应力状态的参考温度不足以确定金属化过程中的应力场。在此不考虑加工过程中产生的固有应力。利用ANSYS的生模能力对工艺步骤进行仿真,既耗时又复杂。考虑金属化系统中固有应力的一种可能性是使用多层堆叠测量的平均cte,这取决于互连在x或y方向上的水平运行方向,或根据文献。采用该数值将按工艺步骤计算的叠层金属化体系应力场与无应力状态的参考温度进行比较。得到的模拟结果有助于更好地理解应力行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal-electric-mechanical simulation of a multilevel metallization system
In modern metallization systems mechanical stress due to CTE mismatch is one of the reliability problems. With the help of finite element simulations the thermal-electrical-mechanical behavior can be calculated. The use of a reference temperature for the stress free state in the simulations is insufficient to determine the stress field in the metallization. The intrinsic stress resulting from the processing is hereby not considered. The simulation of the process steps by the birth and die capability of ANSYS is time consuming and complex. A possibility to consider the intrinsic stress in the metallization system is the use of averaged CTEs from measurements of a multi-level stack depending on the horizontal running direction of the interconnect in the x- or y-direction, or in from literature. The values were taken for a comparison between calculated stress field of the stacked metallization system with process steps and the reference temperature for the stress free state. The achieved simulation results help for a better understanding of the stress behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and modelling of a digital MEMS varactor for wireless applications Aerospace-electronics reliability-assurance (AERA): Three-step prognostics-and-health-monitoring (PHM) modeling approach Hybrid dynamic modeling of V-shaped thermal micro-actuators A systematic approach for reliability assessment of electrolytic capacitor-free LED drivers Numerical simulation of transient moisture and temperature distribution in polycarbonate and aluminum electronic enclosures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1